terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 New crossbreed winegrape genotypes cultivated under rainfed conditions in a semi-arid Mediterranean region

New crossbreed winegrape genotypes cultivated under rainfed conditions in a semi-arid Mediterranean region

Abstract

Traditional drought tolerant varieties such as Cabernet Sauvignon, Monastrell, and Syrah [1], have been used as parents in the grapevine breeding program initiated by the Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA) in 1997 [2]. This work presents the results of evaluating three new genotypes obtained from crosses between ‘Monastrell’ and ‘Cabernet Sauvignon’ (MC16 and MC80) and between ‘Monastrell’ and ‘Syrah’ (MS104), comparing their performance under conditions of water scarcity and high temperatures with that of their respective parental varieties. For this purpose, the six genotypes were cultivated under controlled irrigation conditions (60% ETc) and rainfed conditions. Physiological, production, grape quality, and wine quality parameters were evaluated during 2022. The preliminary results obtained show that, under the experimental conditions of the study, all the evaluated parameters varied significantly between genotypes and irrigation treatments. Under rainfed conditions, the new genotypes had suitable yields, all of them showing higher yields than ‘Monastrell’, the reference variety in the area. Regarding phenolic quality under rainfed conditions, MC16 and MC80 exhibited an average total phenol content (TPC) in skin and seeds of 4757 mg Kg grape-1 and 5097 mg Kg grape-1, respectively, significantly higher than that of the parental varieties. In addition, MS104 ripened and was harvested with a very low sugar content (10.3 °Baumé), making it very interesting and suitable for the production of low-alcohol wines in warm areas. These results suggest that the new genotypes could adapt better than the parental ones to the conditions of water scarcity and high temperatures in the area, maintaining suitable yields and high phenolic quality. If these results are confirmed in successive years, these new genotypes could better tolerate the negative effects of water scarcity and high temperatures on productivity and grape and wine quality.

Acknowledgments: The authors thank Carlos V. Padilla, Eliseo Salmerón and Isidro Hita for crop health control. This work was financed by the Ministerio de Ciencia e Innovación via project PID2020-119263RR-100.

References

1)  Fraga, H. et al. (2016). Climatic suitability of Portuguese grapevine varieties and climate change adaptation. Int. J. Climatol., 36(1), 1-12, DOI: 10.1002/joc.4325
2)  Ruiz-García, et al. (2018) Nuevas variedades de vid obtenidas en la Región de Murcia. Actas Hortic., 80, 226–229.

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Diego José Fernández-López1*, José Ignacio Fernández-Fernández2, Adrián Yepes-Hita1, Celia Martínez-Mora1, Ana Fuentes-Denia1, José Cayetano Gómez-Martínez2, Juan Antonio Bleda-Sánchez2, José Antonio Martínez-Jiménez1, Leonor Ruiz-García1*

1 Molecular Genetic Improvement Team, Instituto Murciano de Investigación y Desarollo Agrario y Medi-oambiental (IMIDA), C/ Mayor s/n, La Alberca, 30150 Murcia, Spain.
2 Oenology and Viticulture Team, Instituto Murciano de Investigación y Desarollo Agrario y Medioambiental (IMIDA), C/ Mayor s/n, La Alberca, 30150 Murcia, Spain.

Contact the author*

Keywords

drought, crossbreeding, water status, production, grape quality, wine quality

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Influence of polysaccharide extracts from wine by-products on the volatile composition of sparkling white wines

In the production of sparkling wines, during the second fermentation, mannoproteins are released by yeast autolysis, which affect the quality of the wines. The effect of mannoproteins has been extensively studied, and may affect aroma and foam quality. However, there are no studies on the effect of other polysaccharides such as those from grapes. Considering the large production of waste from the wine industry, it was proposed to obtain polysaccharide-rich extracts from some of these by-products[1].

Effect of different plant fibers on the elimination of undesirable compounds in red wine. Correlation with its polysaccharide composition

The presence of undesirable compounds in wines, such as OTA, biogenic amines and pesticides residues, affects wine quality and can cause health problems for the consumer. The main tool that a winemaker has to reduce their content in the wine is fining. However, some of the fining agents commonly used in the winery can cause allergies or even increase the protein content in the wine, increasing the turbidity. To avoid these problems, the use of plant fibers may be an alternative, such as those from grape pomace[1] or other plant origins.

Sugar accumulation disorder Berry Shrivel – from current knowledge towards novel hypothesis

In contrast to fruit and grape berry ripening, the biological processes causing ripening disorders are often much less understood, although shriveling disorders of fruits are manifold and contribute to yield losses and reduced fruit quality worldwide. Shrinking berries are a common feature for all shriveling disorders in grapevine although their timing of appearance during the berry ripening process and their underlying induction processes distinct them from each other. The sugar accumulation disorder Berry Shrivel (BS) is characterized by a suppression of sugar accumulation short after veraison resulting in berries low in sugar content and anthocyanins in berry skins, while the organic acid content is similar. Recent studies analyzed the biochemical, morphological and molecular processes affected in BS berries and linked early changes to the period of ripening onset [1,2].

Time vs drought: leaf age rather than drought drives osmotic adjustment in V. vinifera cv. Pinot Noir

Global warming and increased frequency and/or severity of drought events are among the most threatening consequences of climate change for agricultural crops. In response to drought, grapevine (as many other plants) exhibits osmotic adjustment through active accumulation of osmolytes which in turn shift the leaf turgor loss point (TLP) to more negative values, allowing to maintain stomata opened at lower water potentials1. We investigated the capacity of Pinot noir leaves to modulate their osmotic potential as a function of: (i) time (seasonal osmoregulation), (ii) growing temperatures, and (iii) drought events, to enhance comprehension of the resilience of grapevines in drought conditions. We performed trails under semi-controlled field conditions, and in two different greenhouse chambers (20/15 °C vs 25/20 °C day/night). For two consecutive vegetative seasons, grafted potted grapevines (Pinot noir/SO4) were subjected to two different water regimes for at least 30 days: well-watered (WW) and water deficit (WD).

The tolerance of grapevine rootstocks to water deficit is related to root morphology and xylem anatomy traits 

Climate change is altering water balances, thereby compromising water availability for crops. In grapevine, the strategic selection of genotypes more tolerant to soil water deficit can improve the resilience of the vineyard under this scenario. Previous studies demonstrated that root anatomical and morphological traits determine vine performance under water deficit conditions. Therefore, 13 ungrafted rootstock genotypes, 6 commercial (420 A, 41 B, Evex 13-5, Fercal, 140 Ru y 110 R), and 7 from new breeding programs (RG2, RG3, RG4, RG7, RG8, RG9 and RM2) were evaluated in pots during 2021 and 2022.