terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 New crossbreed winegrape genotypes cultivated under rainfed conditions in a semi-arid Mediterranean region

New crossbreed winegrape genotypes cultivated under rainfed conditions in a semi-arid Mediterranean region

Abstract

Traditional drought tolerant varieties such as Cabernet Sauvignon, Monastrell, and Syrah [1], have been used as parents in the grapevine breeding program initiated by the Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA) in 1997 [2]. This work presents the results of evaluating three new genotypes obtained from crosses between ‘Monastrell’ and ‘Cabernet Sauvignon’ (MC16 and MC80) and between ‘Monastrell’ and ‘Syrah’ (MS104), comparing their performance under conditions of water scarcity and high temperatures with that of their respective parental varieties. For this purpose, the six genotypes were cultivated under controlled irrigation conditions (60% ETc) and rainfed conditions. Physiological, production, grape quality, and wine quality parameters were evaluated during 2022. The preliminary results obtained show that, under the experimental conditions of the study, all the evaluated parameters varied significantly between genotypes and irrigation treatments. Under rainfed conditions, the new genotypes had suitable yields, all of them showing higher yields than ‘Monastrell’, the reference variety in the area. Regarding phenolic quality under rainfed conditions, MC16 and MC80 exhibited an average total phenol content (TPC) in skin and seeds of 4757 mg Kg grape-1 and 5097 mg Kg grape-1, respectively, significantly higher than that of the parental varieties. In addition, MS104 ripened and was harvested with a very low sugar content (10.3 °Baumé), making it very interesting and suitable for the production of low-alcohol wines in warm areas. These results suggest that the new genotypes could adapt better than the parental ones to the conditions of water scarcity and high temperatures in the area, maintaining suitable yields and high phenolic quality. If these results are confirmed in successive years, these new genotypes could better tolerate the negative effects of water scarcity and high temperatures on productivity and grape and wine quality.

Acknowledgments: The authors thank Carlos V. Padilla, Eliseo Salmerón and Isidro Hita for crop health control. This work was financed by the Ministerio de Ciencia e Innovación via project PID2020-119263RR-100.

References

1)  Fraga, H. et al. (2016). Climatic suitability of Portuguese grapevine varieties and climate change adaptation. Int. J. Climatol., 36(1), 1-12, DOI: 10.1002/joc.4325
2)  Ruiz-García, et al. (2018) Nuevas variedades de vid obtenidas en la Región de Murcia. Actas Hortic., 80, 226–229.

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Diego José Fernández-López1*, José Ignacio Fernández-Fernández2, Adrián Yepes-Hita1, Celia Martínez-Mora1, Ana Fuentes-Denia1, José Cayetano Gómez-Martínez2, Juan Antonio Bleda-Sánchez2, José Antonio Martínez-Jiménez1, Leonor Ruiz-García1*

1 Molecular Genetic Improvement Team, Instituto Murciano de Investigación y Desarollo Agrario y Medi-oambiental (IMIDA), C/ Mayor s/n, La Alberca, 30150 Murcia, Spain.
2 Oenology and Viticulture Team, Instituto Murciano de Investigación y Desarollo Agrario y Medioambiental (IMIDA), C/ Mayor s/n, La Alberca, 30150 Murcia, Spain.

Contact the author*

Keywords

drought, crossbreeding, water status, production, grape quality, wine quality

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effects of laccase from Botrytis cinerea on the oxidative degradation kinetics of the five natural grape anthocyanins

Enzymatic browning[1] is an oxidation process that occurs in many foods that increases the brown colour[2]. This problem is especially harmful in the wine industry[3]. especially when the grapes are infected by grey rot since this fung release the oxidative enzyme laccase[4]. In the particular case of red wines, the presence of laccase implies the deterioration of the red colour and can even cause the precipitation of the coloring matter (oxidasic haze)[5].

Genetic study of wild grapevines in La Rioja region

Since the mid-1980s, several surveys have been carried out in La Rioja to search for populations of the sylvestris grapevine subspecies (Vitis vinifera L. subsp. sylvestris Gmelin). The banks of the Ebro River and its tributaries (Alhama, Cidacos, Leza, Iregua, Najerilla, Oja and Tirón rivers), as well as the surrounding vegetation of their valleys have been covered. So far, all the populations found are alluvial, forming part of the riparian vegetation of the Najerilla (the first reported population in La Rioja [1]), Iregua, and the vicinity of Oja valleys.

Oenococcus oeni clonal diversity in the carbonic maceration winemaking

This essay was aimed to describe the clonal diversity of Oenococcus oeni in the malolactic fermentation of the carbonic maceration (CM) winemaking. The free and the pressed liquids from CM were sampled and compared to the wine from a standard winemaking with previous destemming and crushing (DC) of grapes [1]. O. oeni strain typification was performed by PFGE as González-Arenzana et al. described (2014) [2]. Results showed that 13 genotypes, referred as to letters, were distinguished from the 49 isolated strains, meaning the genotype “a” the 27%, the “b” the 14%, the “c” the 12%, the “d and e” the 10 % each other, and the remaining ones less than the 8% each one.

New food trend ahead? Highlighting the nutritional benefits of grapevine leaves

The wine industry produces an enormous amount of waste every year. A wider inclusion of disregarded by-products in the human diet or its use as a source of bioactive compounds is a good strategy for reducing waste. It will not only introduce an added value to a waste product but also come upon the European Union and United Nations’ demands towards more sustainable agricultural approaches and circular economy.

Entomopathogenic nematodes application for controlling Lobesia botrana in grapevine and their impact on grapevine quality 

Entomopathogenic nematodes (EPN) are well-known biological control agents combined with specific adjuvants that now allow their use against aerial pests. Lobesia botrana (Lepidoptera: Tortricidae) is one of the major harmful pests detected in worldwide vineyards. Previous studies demonstrated that the EPNs Steinernema feltiae and S. carpocapsae could control L. botrana. The hypothesis was that the best combination of EPN-adjuvant/timing (season/temperatures) will support the use of EPN in the vineyard against L. botrana with no impact on the grape performance.