terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Characterization of a Sémillon clonal population: exploring genetic diversity, metabolomic profiles, and phenotypic variations

Characterization of a Sémillon clonal population: exploring genetic diversity, metabolomic profiles, and phenotypic variations

Abstract

Sémillon is a cultivated grape variety known for contributing to dry and sweet white wine production. However, only seven approved clones have been officially recognized in France[1]. In this study, we aimed to characterize the genetic diversity and metabolomic profiles of a Sémillon clonal population, shedding light on the potential variations within this important grape variety.

Through Illumina whole genome sequencing of 53 Sémillon clones, we observed various genetic variations, including single nucleotide polymorphisms (SNPs), providing comprehensive insights into their diversity and genomic variations. Additionally, metabolic profiling of berries was established with a combination of chemical and Liquid Chromatography-Mass Spectrometry (LC-MS) analysis, allowing to quantify key quality-related parameters such as pH, acidity, sugar content and volatile thiol precursor compounds. Remarkably, our findings revealed significant variations among Sémillon clones, leading to their placing in three distinct clusters.

Moreover, phenotypic evaluations highlighted variations in mid-veraison dates, cluster yield, and berry weight. These findings have practical implications for winemakers and vineyard managers, enabling informed decisions in selecting specific clones with desirable traits to achieve desired wine styles and adapt to specific environments and market demands.

To unravel the underlying mechanisms behind the observed metabolomic and phenotypic variation within this Sémillon clonal population, comprehensive investigations of global metabolome profiles, epigenetic variations, and virome of the Sémillon clones will be conducted. Through the implementation of multi-omics approaches, we aim to obtain a comprehensive understanding of the Sémillon clonal population, unraveling complex regulatory networks and identifying factors that drive the unique characteristics of clones. This integrative approach will expand our knowledge beyond individual components and provides valuable insights into the intricate interplay among key players at various biological levels.

Acknowledgements: This study received financial support from the French government, to the University of Bordeaux as an Initiative of Excellence, under the France 2030 plan, for the GPR Bordeaux Plant Sciences.

References:

1) Catalogue of grapevines cultivated in France. http://plantgrape.plantnet-project.org

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Maryam Khalili1*, Pierre-François Bert1, Jean Pascal Goutouly1,2, Armelle Marais3, Thierry Candresse3, Maria Lafargue1, Christel Renaud1, Philippe Darriet4, Ghislaine Hilbert-Masson1, Philippe Gallusci1,Pierre Pétriacq3, Sabine Guillaumie1, Nathalie Ollat1, Josep Valls Fonayet4, Cécile Tibon4 and Eric Gomès1

1 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33140 Villenave d’Ornon, France
2 Unité Expérimentale Vigne Bordeaux 1442, INRAE, 33140 Villenave d’Ornon, France

3 Univ. Bordeaux, INRAE, UMR 1332 BFP, 33140 Villenave D’Ornon, France
4 Enology, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33140 Villenave d’Ornon, France

Contact the author*

Keywords

Sémillon, genomics, metabolomics, diversity

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Application of antagonistic Metschnikowia strains against Botrytis cinerea in vineyards 

Less and less chemical plant protection products are approved by the E U. Plant pathogenic fungi become increasingly resistant to the active ingredients that have been around for a long time. Besides, there is a valid demand for effective products that can be applied in organic cultivation.
We examined Metschnikowia strains under laboratory conditions in order to find effective strains against B. cinerea. The antimicrobial mechanism of these yeasts is based on the competition for the ferric ions from the environment. Metschnikowia cells release the pulcherriminic acid which chelates with Fe3+, forming the pigment pulcherrimin.

Reduction of the height of the canopy in fruit set and in pea size: vegetative, productive and maturation effects, in cv. Verdejo

Global warming is accelerating the technological ripening of the grape, with a loss of acidity, which requires that vineyard management can delay ripening to avoid it. The source-sink relation is essential for grape ripening, since it affects the distribution of photosynthates and substances derived from plant metabolism. A work is proposed to know the response of the vineyard to the drastic reduction of the foliar surface by trim down the shoots in cv.

Investigation of cellulose nanofiber-based films used as a protective layer to reduce absorption of smoke phenols into wine grapes

Volatile phenols from wildfire smoke are absorbed by wine grapes, resulting in undesirable smoky and ashy sensory attributes in the affected wine.[1] Unfortunately the severity of wildfires is increasing, particularly when grapes are ripening on the vine. The unwanted flavors of the wine prompted a need for solutions to prevent the uptake of smoke compounds into wine grapes. Films using cellulose nanofibers as the coating forming matrix were developed as an innovative means to prevent smoke phenols from entering Pinot noir grapes. Different film formulations were tested by incorporating low methoxy pectin or chitosan.

Early defoliation positively enhances bioactive composition of berries with no effect on cuticle characteristics

Leaf removal in the fruit-zone has been employed to improve cluster light exposure and ventilation and therefore increase metabolite accumulation and reduce botrytis incidence in berries. When applied before flowering (early defoliation – ED), it can also decrease cluster compactness and regulate yield in high-yielding varieties. This study aimed to evaluate the impact of ED on the physiology and metabolism of Aragonez (syn. Tempranillo) berries along the ripening period. The experiment was set up in 2013 at a commercial vineyard located in the Lisbon winegrowing region.

The combined use of Lachancea thermotolerans and lactic bacteria in wine technology

The production of most red wines that are sold involves an alcoholic fermentation carried out by yeasts of the Saccharomyces genus, and a subsequent fermentation carried out by lactic bacteria of the Oenococus oeni species after the first one is fully completed. However, the traditional process can face complications, which can be more likely in grape juices with high levels of sugar and pH. Because of climate change, these situations are more frequent in the wine industry. The main hazards in those scenarios are halts or delays in the alcoholic fermentation or the growth of unwanted bacteria while the alcoholic fermentation is not done yet and the wine still has residual sugars.