terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 “Compost Application in the Vineyard: Effects on Soil Nutrition and Compaction”

“Compost Application in the Vineyard: Effects on Soil Nutrition and Compaction”

Abstract

The mechanization of pruning and harvesting in vineyards has increased the risk of soil compaction. To reclaim soil properties or avoid this degradation process, it is crucial to properly manage the soil organic matter, and the application of compost derived from the vines themselves is a strategy to achieve this. The objective of this study was to evaluate the properties of soil treated with different doses of compost applied both on the vine row and the inter rows of a Vitis vinifera crop.

The experiment was established in May 2020, in three fields with clay contents ranging between 17-36%, with 7 treatments corresponding to compost application rates (0, 4, 10, 20 tons ha-1) and position (inter and intra row). Measurements of soil physical and chemical properties were taken, as well as variables related to the plants.

It was observed that the inter rows had a more deteriorated structural condition compared to the vine rows, especially at surface. However, the increase in compost doses led to a significant decrease in penetration resistance and a notable increase in coarse porosity, especially in soil with more than 20% clay. No evident changes were found in bulk density and soil aggregate stability. An increase in macronutrients (N, P, K) was detected because of compost application, although the effects varied according to soil type.

The treatments did not affect the physiological and productive variables of the plants, although an increase in some foliar nutrients and an improvement in the Ravaz index were observed with compost applications, indicating a more balanced proportion between grape production, and pruning mass. In conclusion, compost application has positive effects on soil properties, especially in the area between rows, by providing nutrients that promote the vegetative and productive balance of the vines, thereby contributing to sustainable production.

Acknowledgements: CORFO Project PI-3486

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Roa-Roco, Rosa1; Seguel, Oscar2; Raphahla, Sidney2; Fernández, Cristian2; Herrera, Carlos2; Tramon, Sebastián3; González, Alvaro1

1Centro de Investigación e Innovación, Viña Concha y Toro
2Universidad de Chile, Facultad de Ciencias Agronómicas
3Viñedos Emiliana

Contact the author*

Keywords

soil organic amendments, Vitis vinifera L., soil compaction

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Energy partitioning and functionality of photosystem II in water-stressed grapevines during heatwaves revealed by continuous measurements of chlorophyll fluorescence

The increased intensity and frequency of heatwaves, coupled with prolonged periods of drought, are a significant threat to viticulture worldwide. During these conditions the more exposed leaves can show visible symptoms of heat damage. We monitored the functionality of photosystem II (PSII) in the field to better understand the impact of heatwaves on canopy performance. A factorial experiment was established in summer 2023 using Shiraz grapevines in the Barossa valley of South Australia, involving water-stressed and well-watered vines.

Identification of loci associated with specialised metabolites in Vitis vinifera

Secondary (or specialised) metabolites such as terpenes and phenolic compounds are produced by plants for various roles which include defence against pathogens and herbivores, protection against abiotic stress, and plant signalling. Additionally, these metabolites influence grapevine quality traits such as colour, aroma, taste, and nutritional value. However, the biosynthesis of these metabolites is often complex and controlled by multiple genes which in grapevine are predominantly uncharacterised.

Typicality of Rioja wines: identification of sensory profiles for the three subregions of DOCa Rioja

Within the DOCa Rioja three main production areas are differentiated: Rioja Alta (RA), Rioja Alavesa (RAv) and Rioja Oriental (RO). They are three diverse territories with particular characteristics that are claimed to give rise to differentiated profiles. The present work aims at evaluating the sensory diversity of young commercial red wines in these three subregions. Therefore 30 young red wines (mainly Tempranillo and vintage 2021), ten from each subregion, were sensory described following a non-verbal free sorting task and a verbal free comment task by 32 well-established Rioja winemakers.

Investigating the Ancient Egyptian wines: The wine jars database

In Ancient Egypt, wine was a luxury product consumed mainly by the upper classes and the royal family and offered to gods in daily religious rituals in the temples.
Since the Predynastic (4000-3100 BC) period, wine jars were placed in tombs as funerary offerings. From the Old Kingdom (2680-2160 BC) to the Greco-Roman (332 BC-395 AD) period, viticulture and winemaking scenes were depicted on the private tombs’ walls. During the New Kingdom (1539-1075 BC), wine jars were inscribed to indicate: vintage year, product, quality, provenance, property and winemaker’s name and title.

The effect of ozonated water treatment on the metabolic profile and resistance of vines to Downy and powdery mildew 

Ozone is a potent oxidizing compound that quickly decomposes into oxygen without residues. Previous works reported that ozone is not only a disinfectant that directly harms the pathogens of the vine but also activates systemic defense systems in the plant by activating oxidative stress. We assume these systemic defense mechanisms are essential to the vines’ resistance to downy and powdery mildew (Plasmopara viticola & Erysiphe necator, respectively). The goals of the research are to examine the effect of spraying with ozone water on the plant’s resistance against the mentioned pathogens as well as to characterize the metabolic profile of the plants treated with ozone as well as physiological characteristics in the vines such as the level of Photosynthesis and crop yield. Vines in the vineyard sprayed with ozone water at concentrations of 2 and 4 PPM weekly and biweekly, untreated control & conventional spray. Leaves were taken from vines 2,4,7,9 and 11 days after exposure to ozone and inoculated with the pathogens.