terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Exploring intra-vineyard variability with sensor- and molecular-based approaches 

Exploring intra-vineyard variability with sensor- and molecular-based approaches 

Abstract

The application of remote and proximal sensing is a fast and efficient method to monitor grapevine vegetative and physiological parameters and is considered valuable to derive information on associated yield and quality traits in the vineyard. Further details can be obtained by the application of molecular analysis at the gene expression level aiming at elucidating how pathways controlling the formation of different grape quality traits are influenced by spatial variability. This work aims at evaluating intra-vineyard variability in grape composition at harvest and at comparing this with remotely sensed canopy vegetation data and molecular-based approaches.

Fourteen spots presenting intra-parcel variability were selected and monitored in a Cabernet Sauvignon vineyard in the Sonoma wine region (CA, USA) during 2017 growing season. The Normalized Difference Vegetation Index (NDVI) was calculated using data acquired by UAV platform equipped with a multispectral camera. The NDVI was then confronted with data obtained from direct measurements on the vines and the berries (e.g., leaf area, yield, and technological berry ripening parameters). Gene expression analysis by microarrays was performed at five time points over berry development spanning from the green to the ripening phase.

Multivariate and correlation analyses were applied to determine the relationship between the vegetation index, the direct vine and berry measurements, and the gene expression information. Spatial variation in berry chemistry (e.g., total anthocyanins) followed a similar pattern to that seen in the vineyard aerial imagery in relation to the vigor zones. On top of this, relevant correlation trends were found also with the expression of the genes related to the berry compounds. Coupling multidisciplinary approaches to map intra-vineyard variability increases the potential of predicting fruit quality and of guiding targeted vineyard management.

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Ron Shmuleviz*1, Elizabeth Green2, Pietro Previtali2, Nick Dokoozlian2, Giovanni Battista Tornielli1, Marianna Fasoli1

1 Department of Biotechnology, University of Verona, 37134 Verona, Italy
2 E. & J. Gallo Winery, Modesto, CA 95354, USA

Contact the author*

Keywords

berry ripening, vegetation indices; gene expression analysis, sensors, precision viticulture  

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Symbiotic microorganisms application in vineyards: impacts on grapevine performance and microbiome

Microorganism-based inoculants have been suggested as a viable solution to mitigate the adverse effects of climate change on viticulture. However, the actual effectiveness of these inoculants when applied under field conditions remains a challenge, and their effects on the existing soil microbiota are still uncertain. This study investigates the impact of arbuscular mycorrhizal fungi inoculation on grapevine performance and microbiome. The study was conducted in a vineyard of Callet cultivar in Binissalem, Mallorca, Spain. Two different treatments were applied: control and inoculation with commercial mycorrhizae complex of Rhizoglomus irregulare applied to plants through irrigation.

The characterization of Vitis vinifera L cv. Cabernet sauvignon: the contribution of Ecklonia maxima seaweed extract

Biostimulants and biofertilizers are considered environmentally friendly and cost-effective alternatives to synthetic fertilizers, plant growth regulators and crop improvement products. Broadly, plant biostimulants are expected to improve nutrient use efficiency, tolerance to abiotic stress, quality traits and availability of nutrients in the soil or rhizosphere. Currently, seaweed extracts account for more than 33% of the total plant biostimulant market. Within this category, Ascophyllum nodosum (AN), is the most widely studied and applied in biostimulant formulations.

Correlative study between degradation of rosé wine under accelerated conditions and under normal conditions

Several studies have tried to develop different methods to study the photodegradation of wine in an accelerated way, trying to elucidate the effect of light on the wine compounds[1]. In a previous study, our team developed a chamber that speeds up the photodegradation of rosé wine[2]. In the present work we have tried to establish a correlation between irradiation times in accelerated conditions and the natural exposure to the cycles of light that usually exist in markets or at home.

The generation of suspended cell wall material may limit the effect of ultrasound in some varieties

The disruptive effect exerted by high-power ultrasound (US) on plant cell walls, natural barriers to the diffusion of compounds of interest during the maceration of red wines, is established as the reason behind the chromatic improvement that its treatment causes. However, sometimes this improvement is not observed, especially with short maceration times. The presence of a high quantity of suspended cell wall material, which formation is favored by the sonication, could be the cause of this lack of positive results since this cell wall material has a high affinity for phenolic compounds.

Sensory profile of wines obtained from disease-resistant varieties in La Rioja

The European wine industry is facing multiple challenges derived from climate change and the pressure of different fungal diseases that are compromising the production of traditional varieties. A sustainable alternative maybe the adoption of resistant varieties.
In this study, we have evaluated the enological potential of 9 resistant varieties (5 white and 4 red varieties) in La Rioja. Microvinifications were carried out with three biological replications. Oenological parameters were very diverse with acid content varying from 2.6 g/L to 6.6 g/L.