terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Bioprotection of grape must by Metschnikowia sp.: genericity and mechanism

Bioprotection of grape must by Metschnikowia sp.: genericity and mechanism

Abstract

The market trend heads to food products with less chemical inputs, including in oenology. During the winemaking process, sulfites are commonly use to avoid microbiological contamination and stabilization of the wine thanks to its antimicrobial and antioxidant activities. Nevertheless, this use is not without consequences on human health and environment, leading for example to allergic reaction and pollution. A biological alternative to these sulfites has emerges: the bioprotection. This method consists to inoculate at the pre-fermentation stage, a microorganism able to inhibit the growth of the negative indigenous flora. The genus Metschnikowia is well know to have this bioprotection property, especially M. pulcherrima and M. fructicola, but the mechanisms remain poorly studied. This project aims to study the bioprotection abilities of 50 strains of Metschnikowia, including 16 species, against Gluconobacter oxydansand Brettanomyces bruxellensis, both known to lead to defects in organoleptic properties of the wine. To investigate the bioprotection effect, grape juice was inoculated with Metschnikowia sp. and G. oxydans or Metschnikowia sp. And B. bruxellensis. The capacity of Metschnikowia to inhibit G. oxydans growth was evaluated for 7 days by plate counting and by digital PCR for B. bruxellensis. In parallel, Metschnikowia species are inoculated in synthetic grape must to quantify the production of the acid pulcherriminic precursor. This acid is considered as a way for the yeast to compete for iron in the medium, and thus as a method of bioprotection. The results show a diversity in the bioprotection effect towards the spoilage microorganisms and in the production of the acid pulcherriminic precursor. The bioprotection could be an alternative in the sustainable pre-fermentative management of winemaking process.

Acknowledgements: We were grateful to Région Occitanie and INRAE MICA department for funding this project.

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Julie Aragno1, Angèle Thiriet2, Pascale Fernandez-Valle1, Cécile Grondin2, Jean-Luc Legras1,2, Carole Camarasa1, Audrey Bloem1

1 UMR SPO, Université Montpellier, INRAE, Institut Agro, Montpellier, France
2 CIRM Levures, UMR SPO, Montpellier

Contact the author*

Keywords

alcoholic fermentation, bioprotection, Metschnikowia sp., diversity

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Ecophysiological characterisation of terroir effects on Vitis vinifera L. Chardonnay and pinot noir in south african cool climate regions

Terroir encompasses environmental (climate, geology, soil and topography), genetic (cultivar and clone) and human factors (oenological and viticultural practices). Climate change brings about shifts in the suitability of a region for the growth of specific grapevine cultivars. This study focused on climatic and fruit parameters (berry size, weight, pH, total acidity (TA) and phenolics) to characterise the terroir effect in Vitis vinifera L. cultivars Chardonnay and Pinot Noir vineyards in the Cape South Coast region (Walker Bay and Elgin).

Plastic debris at vines: carriers of pollutants in the environment?

Modern agriculture employs large amounts of plastics, such as mulching and greenhouse films, thermal covers, plant protection tubes and tying tape. The latter two types are very common in viticulture. Guard tubes are employed to protect young vines from mechanic and atmospheric damage, whilst polymeric tying tape has replaced natural-origin materials to hold the canopy of vines. Both materials are made on synthetic polymers, which include a range of additives to improve their environmental stability remaining in the environment of vineyards for years. During this time, they are exposed to the range of pesticides (fungicides, insecticides and in a lesser extend herbicides) applied to vines.

Barrels ad-hoc: Spanish oak wood classification by NIRs 

The wooden barrel is a key factor in enology, since wine chemical composition and sensory properties changes significantly in contact with the barrel[1]. Today’s highly competitive market constantly demands new differentiated products and wineries search innovations continuously.
Wood selection is crucial: barrels stability to keep constant their contribution and the result on products, and additional and differentiated wood contributions to impact their new products. Oak wood selection has traditionally been carried out using parameters such as specie, location and grain, however, it goes one step further nowadays. Large cooperage work with non-destructive techniques that allow classifying oak wood quickly and easily according to their organoleptic contribution[2].

Optimization of the ripening time of new varieties descendants of Monastrell

Given the impact of climate change on viticulture in the Region of Murcia, this paper attempts to expose the possibility of using genetic improvement as a dilemma that allows access to new descendant varieties of the autochthonous variety Monastrell crossed with varieties such as Syrah and Cabernet. Sauvignon, thus obtaining hybrids (Gebas and Myrtia). In it, the chromatic parameters and the phenolic profile of the new varieties will be compared with those obtained by the Monastrell variety at two moments during maturation (12 and 14 º Baumé), to check if the results would allow earlier harvests in these new varieties thus avoiding the decoupling between phenolic and technological maturity, while improving the quality of grapes and wines.

Physico-chemical properties of vine pruning residues with potential as enological additive

Grapes are one of the world’s primary fruit crops, and pruning activities generate high amounts of annual wood wastes [1]. These pruning shoots contain valuable phenolic compounds and could have numerous potential applications [1,2]. Consequently, the aim of this work was to evaluate the physico-chemical properties of vine pruning residues with potential as enological additives. For this purpose, grapevine shoots from 12 varieties grown in Chile were collected during the winter of 2021.