terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 The tolerance of grapevine rootstocks to water deficit is related to root morphology and xylem anatomy traits 

The tolerance of grapevine rootstocks to water deficit is related to root morphology and xylem anatomy traits 

Abstract

Climate change is altering water balances, thereby compromising water availability for crops. In grapevine, the strategic selection of genotypes more tolerant to soil water deficit can improve the resilience of the vineyard under this scenario. Previous studies demonstrated that root anatomical and morphological traits determine vine performance under water deficit conditions. Therefore, 13 ungrafted rootstock genotypes, 6 commercial (420 A, 41 B, Evex 13-5, Fercal, 140 Ru y 110 R), and 7 from new breeding programs (RG2, RG3, RG4, RG7, RG8, RG9 and RM2) were evaluated in pots during 2021 and 2022. Well-watered plants were subjected to progressive water deficit and subsequent recovery.  Plant water status and hydraulic conductance was determined under different conditions of water availability and, at the end of the experiment, the anatomy of the vascular system and root morphology were characterized by using optical microscopy and WinRHIZO software respectively. The results showed a great anatomical diversity of xylem among the genotypes studied. The greater proportion of fine roots and the smaller diameter of the xylem vessels seem to be key traits in the tolerance to severe stress and the recovery capacity. The genotypes 420 A and RM2 (common parent V. Berlandieri), showed greater tolerance to severe stress and recovery capacity. On the other hand, the new RG series did not show clear advantages of adaptation to stress compared to commercial rootstocks. These findings improve the understanding of the role of root anatomy and morphology in vine responses to water deficit providing a basis for future breeding programs.

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Flor L.1*, Buesa I.1,2, Sabater A.1, Gómez I.1, Medrano H.1,2, Escalona JM 1,2

1Agro-environmental and Water Economy Research Institute-University of Balearic Islands (INAGEA-UIB)
2Research group of plant biology under Mediterranean Conditions – University of Balearic Islands (PlantMed-UIB)

Contact the author*

Keywords

hydraulic conductance, plant water status, drought, climate change, xylem vessels, root diameter

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Aroma characterization of mold resistant base wines for sparkling wine produced in a warm-temperate area at two different altitudes

In a recent context where consumers pay an increasing attention to sustainability and eco-friendly aspects in the decision-making process, the use of the resistant varieties in the wine sector have returned to the attention. In this context, the use of mould-resistant grape varieties would be an opportunity for sparkling wine producers as it can reduced the pesticide utilization in grape management and hence production costs.
However, the use of the resistant varieties to produce the base wine may be strongly influenced due to its requirements for a particular balance between sugars and acidity to ensure the quality of the final product. In addition, the aromatic profile of base wine plays a crucial role in the perception of the quality of the sparkling wine.

The use of plasma activated water in barrel disinfection: impact on oak wood composition

The use of barrels is a practice that improves the quality of wines. The porous structure of wood favors the accumulation of microorganisms that can deteriorate the quality of wines so that barrel cleaning and sanitizing treatments are essential. The burning of sulphur discs has been the most common practice in winemaking because ots biocide effect. Nevertheless, its effectiveness is still insufficient and it is harmful for human health.

Viticultural heritage in mountain territories of Catalonia: prospecting in the region of Osona, northern Spain

The recovery of ancestral or minority vine varieties has been gaining great interest in recent years, among other reasons because it is likely that some of these varieties, due to the fact that they are found in relict areas, have a greater potential for adaptation to external factors (biotic or abiotic) and can minimize the effects that climate change is causing in viticulture. Varieties that can be grown at altitude are currently being sought to combat rising temperatures and prolonged extreme drought conditions. In Catalonia, the Pyrenean expansion of vineyard cultivation is documented from the 10th century and has been related to the “small climatic optimum” (9th-12th centuries) and also to seigniorial power.[1] But different adverse climatic periods and the arrival of Phylloxera by the late 19th century made many of these crops disappear.[2]

Grape pomace, an active ingredient at the intestinal level: Updated evidence

Grape pomace (GP) is a winemaking by-product particularly rich in (poly)phenols and dietary fiber, which are the main active compounds responsible for its health-promoting effects. GP-derived products have been proposed to manage cardiovascular risk factors, including endothelial dysfunction, inflammation, hypertension, hyperglycemia, and obesity. Studies on the potential impact of GP on gut health are much more recent. However, it is suggested that, to some extent, this activity of GP as a cardiometabolic health-promoting ingredient would begin in the gastrointestinal tract as GP components (i.e., (poly)phenols and fiber) undergo extensive catabolism, mainly by the action of the intestinal microbiota, that gives rise to low-molecular-weight bioactive compounds that can be absorbed and utilized by the body.

Reduction of the height of the canopy in fruit set and in pea size: vegetative, productive and maturation effects, in cv. Verdejo

Global warming is accelerating the technological ripening of the grape, with a loss of acidity, which requires that vineyard management can delay ripening to avoid it. The source-sink relation is essential for grape ripening, since it affects the distribution of photosynthates and substances derived from plant metabolism. A work is proposed to know the response of the vineyard to the drastic reduction of the foliar surface by trim down the shoots in cv.