terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effects of progeny in the modulation of the response to water stress in isohydric and anisohydric varieties

Effects of progeny in the modulation of the response to water stress in isohydric and anisohydric varieties

Abstract

Each grapevine variety has a specific water use regulation response under drought, and it is still unclear whether this regulation results from innate genotypic behavior (iso- and anisohydric), or is a response to environmental factors, namely recurrent water stress priming effects. In the present work, we explored the influence of the field-grown genotypes’ drought memory in the drought-response phenotype of their vegetative progenies, in Trincadeira (isohydric) and Castelão (anisohydric) varieties under a drought event followed by recovery in a glasshouse. Cuttings from both cultivars subjected to full irrigation (FI) and non-irrigation (NI) treatments for 5 consecutive years were used. Progenies were subjected to two irrigation treatments, well-watered (WW), where the soil was kept at field capacity, and water-stress (WS), where irrigation was withheld for 7 days. WS plants were then re-watered and kept at field capacity for 72h. Measurements and sampling were done in both progenies of both treatments, at 0h, 72h and 168h after the beginning of the treatment and after 24h and 72h of recovery. NI progenies from both cultivars had improved gas exchange parameters, better total plant hydraulic conductance under drought, and faster recovery than FI progenies. Nocturnal and diurnal transpiration were affected both by progeny and treatment. Leaf wax content was significantly enhanced by WS in both progenies, but it was higher in NI progenies. Stomatal conductance kinetic showed differences in the timing of stomatal aperture between progenies, in particular after water recovery. Leaf temperature (Tc) was similar in both varieties and progenies, but higher temperatures were measured under WS. Leaf temperature only recovered 72h after re-watering. Although isohydric and anisohydric genotypes exhibited different drought acclimation responses due to their inner genetic behavior, their underlying hydraulic, stomatal and photosynthetic regulatory mechanisms were also affected by historical origin. In this presentation, fundamental insights about potential priming mechanisms in grapevine will be further discussed.

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Olfa Zarrouk1,2†, João de Deus3*, Miguel Damasio3*, Ana Rodrigues4, José Silvestre3, Luisa Carvalho1†

1LEAF – Linking Landscape, Environment, Agriculture and Food Research Centre, Associate Laboratory TERRA, ISA-ULisboa, Lisboa, Portugal
2SFCoLAB – Laboratório Colaborativo para a Inovação Digital na Agricultura, Torres Vedras, Portugal
3INIAV – Instituto Nacional de Investigação Agrária e Veterinária, I.P., Oeiras, Portugal
4CEF – Centro de Estudos Florestais, Associate Laboratory TERRA, ISA-ULisboa, Lisboa, Portugal

Contact the author*

Keywords

thermal imaging, hydraulic conductance, stomatal conductance, transpiration

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Foliar application of urea improved the nitrogen composition of Chenin grapes

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison.

Influence of irrigation frequency on berry phenolic composition of red grape varieties cultivated in four spanish wine-growing regions

The global warming phenomenon involves the frequency of extreme meteorological events accompanied by a change in rainfall distribution. Irrigation frequency (IF) affects the spatial and temporal soil water distribution but its effects on the phenolic composition of the grape have been scarcely studied. The aim of this work was to evaluate the effects of four deficit irrigation frequencies of 30 % ETo: one irrigation per day (T01), two irrigations per week (T03), one irrigation per week (T07) and one irrigation every two weeks (T15) on berry phenolic composition at harvest.

Energy partitioning and functionality of photosystem II in water-stressed grapevines during heatwaves revealed by continuous measurements of chlorophyll fluorescence

The increased intensity and frequency of heatwaves, coupled with prolonged periods of drought, are a significant threat to viticulture worldwide. During these conditions the more exposed leaves can show visible symptoms of heat damage. We monitored the functionality of photosystem II (PSII) in the field to better understand the impact of heatwaves on canopy performance. A factorial experiment was established in summer 2023 using Shiraz grapevines in the Barossa valley of South Australia, involving water-stressed and well-watered vines.

Viticultural heritage in mountain territories of Catalonia: prospecting in the region of Osona, northern Spain

The recovery of ancestral or minority vine varieties has been gaining great interest in recent years, among other reasons because it is likely that some of these varieties, due to the fact that they are found in relict areas, have a greater potential for adaptation to external factors (biotic or abiotic) and can minimize the effects that climate change is causing in viticulture. Varieties that can be grown at altitude are currently being sought to combat rising temperatures and prolonged extreme drought conditions. In Catalonia, the Pyrenean expansion of vineyard cultivation is documented from the 10th century and has been related to the “small climatic optimum” (9th-12th centuries) and also to seigniorial power.[1] But different adverse climatic periods and the arrival of Phylloxera by the late 19th century made many of these crops disappear.[2]

Association between dietary pattern and wine consumption and Alzheimer’s disease in a cohort from La Rioja (Spain)

Addressing modifiable risk factors is the most promising strategy to prevent/delay Alzheimer Disease (AD)[1]. The aim of the study was to establish the connections between dietetic habits, wine consumption and AD. Thus, 98 volunteers were recruited: 50 diagnosed as AD and 48 healthy/controls. The Food Frequency Questionnaire (FFQ) was used for dietary patterns assessment and, based on these data, the Mind Diet Score was calculated. (Poly)phenol metabolites (especially derived from wine consumption) were analyzed by UPLC-QqQ-MS/MS in 24-h urine samples to confirm dietary (poly)phenol consumption.