terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Chemical profiling and sensory analysis of wines from resistant hybrid grape cultivars vs conventional wines

Chemical profiling and sensory analysis of wines from resistant hybrid grape cultivars vs conventional wines

Abstract

Recently, there has been a shift toward sustainable wine production, according to EU policy (F2F and Green Deal), to reduce pesticide usage, improve workplace health and safety, and prevent the impacts of climate change. These trends have gained the interest of consumers and winemakers. The cultivation of disease resistant hybrid grape cultivars (DRHGC), known as ‘PIWI’ grapes can help with these objectives [1]. This study aimed to profile white and red wines produced from DRHGC in South Tyrol (Italy). Wines produced from DRHGCs were compared with conventional wines produced by the same wineries. The measured parameters were residual sugars, organic acids, alcohol content, pigments and other phenolics by LC-QqQ/MS, colorimetric indexes (CIELab); and volatile profiles (HS-SPME-GCxGC-ToF/MS [2]). The Projective Mapping (napping) sensory protocol and the RATA (rate-all-that-apply) method were used to provide rapid categorization and characterization of DRHGC and conventional wines using an internal panel of 19 assessors (aged 25-40 years old). Preliminary analytical results for red wines showed that diglucosylated and triglucosylated anthocyanins were most common, and they were present also as acetylated and p-coumaroylated esters. The profile of cyclic proanthocyanidins was investigated for the first time in PIWI wines, such us ‘Solaris’, ‘Bronner’, ‘Muskaris’, ‘Johanniter’, ‘Souvignier gris’, ‘Regent’, and ‘Cabernet Cortis’, and compared with conventional white and red wines.

The sensory attributes found in PIWI white wines were “tree fruit” (pear, green apple) in ‘Solaris’ and ‘Bronner’, “caramelized” (honey) and “floral” (rosewater) in ‘Muskaris’, “stone fruit” (peach) in ‘Johanniter’, and “woody” (oak and coffee) in ‘Souvignier gris’  In contrast, sensory attribute “vegetative” (green bell pepper) conventional wines was perceived more  in Pinot Blanc and Pinot Gris as conventional wines.

The combination of sensory evaluation, chemical analysis, and multivariate statistical methods provided a deeper and more complete understanding of the quality of the wines under investigation.

Acknowledgments: Wineries (Bolzano, Italy) are kindly acknowledged for providing the wines analyzed in this study.

References:

1)  Duley, G., et. al (2023). Oenological potential of wines produced from diseaseresistant grape cultivars. Compr. Rev. Food Sci. DOI 10.1111/1541-4337.13155

2)  De Rosso, et. al (2012). Study of anthocyanic profiles of twenty-one hybrid grape varieties by liquid chromatography and precursor-ion mass spectrometry. Anal. Chim. Acta., 732, 120-129. DOI 10.1016/j.aca.2011.10.045

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Adriana Teresa Ceci1,2, *, Edoardo Longo1,2, Gavin Duley1,2, Emanuele Boselli1,2

1Oenolab, NOI TechPark Alto Adige/Südtirol, Via A. Volta 13B, 39100 Bolzano, Italy
2Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy

Contact the author*

Keywords

disease resistant hybrid grape cultivars, volatile compounds, phenolic profile, Projective Mapping

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Analysis of volatile composition of interaction between the pathogen E. necator and two grapevine varieties

Volatile organic compounds (VOCs) are emitted by nearly all plant organs of the plants, including leaves. They play a key role in the communication with other organisms, therefore they are involved in plant defence against phytopathogens. In this study VOCs from grapevine leaves of two varieties of Vitis vinifera infected by Erysiphe necator were analysed. The varieties were selected based on their susceptibility to pathogen, Kishmish Vatkana has the Ren1 resistance gene and Zamarrica showed high susceptibility in previous trials.

The characterization of Vitis vinifera L cv. Cabernet sauvignon: the contribution of Ecklonia maxima seaweed extract

Biostimulants and biofertilizers are considered environmentally friendly and cost-effective alternatives to synthetic fertilizers, plant growth regulators and crop improvement products. Broadly, plant biostimulants are expected to improve nutrient use efficiency, tolerance to abiotic stress, quality traits and availability of nutrients in the soil or rhizosphere. Currently, seaweed extracts account for more than 33% of the total plant biostimulant market. Within this category, Ascophyllum nodosum (AN), is the most widely studied and applied in biostimulant formulations.

Detoxification capacities of heavy metals and pesticides by yeasts 

Winegrowing is still characterized by the extensive use of chemical fertilizers and plant protection products, despite strong recommendations to limit these practices. A part of these xenobiotics and metals are then found in grape juice and wine, causing a major health concern, as well as negatively affecting the fermentation process. In recent years, there has been renewed interest in non-Saccharomyces yeasts. These species have a wide phenotypic diversity, which would be exploited to broaden the aromatic palette of wines.

Atypical aging and hydric stress: insights on an exceptionally dry year

Atypical aging (ATA) is a white wine fault characterized by the appearance of notes of wet rag, acacia blossoms and naphthalene, along with the vanishing of varietal aromas. 2-aminoacetophenone (AAP) – a degradation compound of indole-3-acetic acid (IAA) – is regarded as the main sensorial and chemical marker responsible for this defect. About the origin of ATA, a stress reaction occurring in the vineyard has been looked as the leading cause of this defect. Agronomic, climatic and pedological factors are the main triggers and among them, drought stress seems to play a crucial role.[1]

Organic mulches slightly influence wine phenolic composition and sensorial properties

Grapevines have traditionally been grown in semi-arid areas, but viticulture is now compromised by climate change. Therefore, it is necessary to implement environmentally friendly viticulture practices to adapt grapevines to current climatic conditions. In this context, organic mulches offer many benefits, such as reduced soil erosion and increased organic matter, soil water content and crop productivity. However, these practices must not compromise grape and wine quality. Therefore, the objective of this study was to evaluate the effect on wine physicochemical and phenolic composition and sensorial properties of different soil management practices on the vine row. Over four years, five soil treatments were examined in two different vineyards.