terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 A novel approach for the identification of new biomarkers of wine consumption in human urine using untargeted metabolomics

A novel approach for the identification of new biomarkers of wine consumption in human urine using untargeted metabolomics

Abstract

Wine is one of the most representative components of Mediterranean diet. Moderate wine intake together with food, has been positively correlated with reduced risk of many chronic diseases. This beneficial effect seems to be ascribed to elevated polyphenolic content of wine [1]. Traditional approaches for the identification of wine biomarkers consumption include targeted metabolomics that focuses on the quantification of well-defined metabolites, losing a valuable information about a massive number of compounds. On the other hand, untargeted metabolomics can disclose a large quantity of signals corresponding to potential biomarkers in a single analysis with high sensitivity and resolution. This work focuses on the identification of wine intake biomarkers in 24-h urine samples of free-living volunteers using untargeted metabolomics approach. Two groups were included: (i) volunteers with daily and moderate wine consumption, and (ii) control group, volunteers who never drink wine. Urine samples (24-h) were analysed by liquid chromatography coupled with high-resolution mass spectrometry (UPLC-QToF), using two stationary phases (RP and HILIC) to separate metabolites of different polarities, moreover all the analyses were done in both positive and negative ionization modes. The most significant compounds highlighted after performing an OPLS-DA were tentatively identified based on their accurate masses and spectra information. Different metabolites associated with wine intake have been tentatively proposed, such as aminoacids and peptides, and different phenol metabolites.

Acknowledgements: MCIN / AEI /10.13039/501100011033 and the European Union NextGenerationEU/PRTR through the project PID2019-108851RB-C22. M.J-S. thanks University of La Rioja for her PostDoc grant financed by the European Union-NextGenerationEU.

References:

  1. Hrelia S. et al. (2023) Moderate Wine Consumption and Health: A Narrative Review. Nutrients, 15: 175-200, DOI 10.3390/nu15010175.

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Jiménez-Salcedo M.1,2*, Manzano JI.1, Pérez-Matute, P.3, Motilva MJ. 1

1 Instituto de Ciencias de la Vid y el Vino-ICVV (CSIC, UR, GR) 26007 Logroño (España)
2 Universidad de La Rioja, 26006 Logroño (España)
3 Infectious Diseases, Microbiota and Metabolism Unit, Center for Biomedical Research of La Rioja (CIBIR), CSIC Associated Unit. 26006 Logroño (España)

Contact the author*

Keywords

untargeted metabolomics, wine, biomarker, polyphenols

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Can yeast cells sense other yeasts beyond competition interactions?

The utilization of non-Saccharomyces yeasts in the wine industry has increased significantly in recent years. Alternative species need commonly be employed in combination with Saccharomyces cerevisiae to avoid stuck fermentation, or microbial spoilage. The employment of more than one yeast starter can lead to interactions between different species with an impact on the outcome of wine fermentation. Previous studies[1] demonstrated that S. cerevisiae elicits transcriptional responses with both shared and species-specific features in co-culture with other yeast species.

The effect of ozonated water treatment on the metabolic profile and resistance of vines to Downy and powdery mildew 

Ozone is a potent oxidizing compound that quickly decomposes into oxygen without residues. Previous works reported that ozone is not only a disinfectant that directly harms the pathogens of the vine but also activates systemic defense systems in the plant by activating oxidative stress. We assume these systemic defense mechanisms are essential to the vines’ resistance to downy and powdery mildew (Plasmopara viticola & Erysiphe necator, respectively). The goals of the research are to examine the effect of spraying with ozone water on the plant’s resistance against the mentioned pathogens as well as to characterize the metabolic profile of the plants treated with ozone as well as physiological characteristics in the vines such as the level of Photosynthesis and crop yield. Vines in the vineyard sprayed with ozone water at concentrations of 2 and 4 PPM weekly and biweekly, untreated control & conventional spray. Leaves were taken from vines 2,4,7,9 and 11 days after exposure to ozone and inoculated with the pathogens.

Application of an in vitro digestion model to study the bioaccessibility and the effect of the intestinal microbiota on the red wine proanthocyanidins 

Proanthocyanidins are important phenolic fraction for wine quality, contributing to astringency, bitterness and color. Their metabolism begins in the mouth and continues throughout the gastrointestinal tract; however, most of them are accumulated in the colon where are metabolized by the intestinal microbiota, giving rise to a whole series of phenolic acids that may have greater activity at physiological level than the precursors[1]. This study aimed to evaluate in vitro the bioaccessibility of proanthocyanidins in a red wine developed by Bodegas Pradorey, as well as to evaluate the potential effect of intestinal microbiota on polyphenols metabolism identifying and quantifying secondary metabolites.

Effect of different plant fibers on the elimination of undesirable compounds in red wine. Correlation with its polysaccharide composition

The presence of undesirable compounds in wines, such as OTA, biogenic amines and pesticides residues, affects wine quality and can cause health problems for the consumer. The main tool that a winemaker has to reduce their content in the wine is fining. However, some of the fining agents commonly used in the winery can cause allergies or even increase the protein content in the wine, increasing the turbidity. To avoid these problems, the use of plant fibers may be an alternative, such as those from grape pomace[1] or other plant origins.

Early defoliation positively enhances bioactive composition of berries with no effect on cuticle characteristics

Leaf removal in the fruit-zone has been employed to improve cluster light exposure and ventilation and therefore increase metabolite accumulation and reduce botrytis incidence in berries. When applied before flowering (early defoliation – ED), it can also decrease cluster compactness and regulate yield in high-yielding varieties. This study aimed to evaluate the impact of ED on the physiology and metabolism of Aragonez (syn. Tempranillo) berries along the ripening period. The experiment was set up in 2013 at a commercial vineyard located in the Lisbon winegrowing region.