terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 A novel approach for the identification of new biomarkers of wine consumption in human urine using untargeted metabolomics

A novel approach for the identification of new biomarkers of wine consumption in human urine using untargeted metabolomics

Abstract

Wine is one of the most representative components of Mediterranean diet. Moderate wine intake together with food, has been positively correlated with reduced risk of many chronic diseases. This beneficial effect seems to be ascribed to elevated polyphenolic content of wine [1]. Traditional approaches for the identification of wine biomarkers consumption include targeted metabolomics that focuses on the quantification of well-defined metabolites, losing a valuable information about a massive number of compounds. On the other hand, untargeted metabolomics can disclose a large quantity of signals corresponding to potential biomarkers in a single analysis with high sensitivity and resolution. This work focuses on the identification of wine intake biomarkers in 24-h urine samples of free-living volunteers using untargeted metabolomics approach. Two groups were included: (i) volunteers with daily and moderate wine consumption, and (ii) control group, volunteers who never drink wine. Urine samples (24-h) were analysed by liquid chromatography coupled with high-resolution mass spectrometry (UPLC-QToF), using two stationary phases (RP and HILIC) to separate metabolites of different polarities, moreover all the analyses were done in both positive and negative ionization modes. The most significant compounds highlighted after performing an OPLS-DA were tentatively identified based on their accurate masses and spectra information. Different metabolites associated with wine intake have been tentatively proposed, such as aminoacids and peptides, and different phenol metabolites.

Acknowledgements: MCIN / AEI /10.13039/501100011033 and the European Union NextGenerationEU/PRTR through the project PID2019-108851RB-C22. M.J-S. thanks University of La Rioja for her PostDoc grant financed by the European Union-NextGenerationEU.

References:

  1. Hrelia S. et al. (2023) Moderate Wine Consumption and Health: A Narrative Review. Nutrients, 15: 175-200, DOI 10.3390/nu15010175.

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Jiménez-Salcedo M.1,2*, Manzano JI.1, Pérez-Matute, P.3, Motilva MJ. 1

1 Instituto de Ciencias de la Vid y el Vino-ICVV (CSIC, UR, GR) 26007 Logroño (España)
2 Universidad de La Rioja, 26006 Logroño (España)
3 Infectious Diseases, Microbiota and Metabolism Unit, Center for Biomedical Research of La Rioja (CIBIR), CSIC Associated Unit. 26006 Logroño (España)

Contact the author*

Keywords

untargeted metabolomics, wine, biomarker, polyphenols

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effect of ultraviolet B radiation on pathogenic molds of grapes

The fungicidal effect of UV-C radiation (100-280 nm wavelength) is well known, but its applicability for the control of pathogenic molds of grapes is conditioned by its effect on the host and by the risks inherent in its handling[1].
As an alternative, the effect in vitro of UV-B radiation (280-315 nm) on the main pathogenic molds of grapes has been studied: Botrytis cinerea, Aspergillus niger, Penicillium expansum and Rhizopus stolonifer.

Pre-breeding for developing heat stress resilient grape varieties to ensure yield 

Climate change has numerous detrimental consequences and creates new challenges for viticulture around the world. Transitory or constant high temperatures frequently associated with an excess of sunlight (UV) can cause a variety of physiological disorders, such as sunburn. Diverse environmental factors and the plant’s response mechanisms to stress determine the symptoms. Grapevine berry sunburn leads to a drastic reduction in yield, and may eventually decline berry quality. Consequently, this poses a significant risk to the winegrowers.

Grapevine cane pruning extract enhances plant physiological capacities and decreases phenolic accumulation in canes and leaves 

Vine cane extracts are a valuable byproduct due to their rich content of polyphenols, vitamins, and other beneficial compounds, which can affect and benefit the vine and the grapes. This study aims to evaluate the response of grapevine plants to irrigation with water supplemented with a vine cane extract, both at physiology response and phenolic composition in different parts of the plant (root, trunk, shoot, leaf, and berry).
Cane extract was obtained by macerating crushed pruning residues with warm water (5:1) and pectolytic enzymes. Two-year-old potted plants were irrigated with water (Control) while others were irrigated with cane extracts, either at 1:4 (w/v, cane extract/water; T 1:4) or at 1:8 (w/v, cane extract/water; T 1:8).

REGAVID a decision tool to deficit irrigation in a temperate climate (DO Monterrei – Spain)

In temperate climates, such as in the North of Spain, the use of irrigation in the vineyard has not been required, due to the usual rainfall from June to August. In some large vineyards, irrigation management has been carried out, based on occasional support irrigation, or for the application of nutrients (fertigation). Currently it is necessary to implement decision support models to manage irrigation water in real time and avoid misuse of a scarce resource. Moreover, quality standards must be achieved, as in the previous rainfed viticulture.

Photoprotective extracts from agri-food waste to prevent the effect of light in rosé wines 

Light is responsible for adverse reactions in wine including the formation of unpleasant flavors, loss of vitamins or photodegradation of anthocyanins. Among them, the riboflavin degradation leads to the formation of undesirable volatile compounds, known as light-struck taste. These photo-chemical reactions could be avoided by simply using opaque packaging. However, most rosé wines are kept in transparent bottles due to different commercial reasons. Some agri-food waste extracts have been studied for their photoprotective action which turn to be highly correlated with phenolic content [1].