terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Volatilome in grapevine leaves is defined by the variety and modulated by mycorrhizal symbiosis

Volatilome in grapevine leaves is defined by the variety and modulated by mycorrhizal symbiosis

Abstract

Volatile organic compounds (VOCs) constitute a diverse group of secondary metabolites key for the communication of plants with other organisms and for their adaptation to environmental and biotic stresses. The emission of these compounds through leaves is also affected by the interaction of plants with symbiotic microorganisms, arbuscular mycorrhizal fungi (AMF) among them [1]. Our objective was to know the concentration and profile of VOCs emitted by the leaves of two grapevine varieties (Tempranillo, T, and Cabernet Sauvignon, CS, grafted onto R110 rootstocks), inoculated or not with a consortium of five AMF (Rhizophagus irregularis, Funneliformis  mosseae, Septoglomus deserticola, Claroideoglomus claroideum and C. etunicatum). A total of 43 different VOCs were detected in both varieties by gas chromatography coupled to mass spectrometry (SPME GC-MS). The quantitative analyses revealed that leaves of CS had higher concentration of VOCs than those of T, the effect of the mycorrhizal symbiosis on the total levels of VOCs being non-significant. The predominant VOCs were those synthetized by the LOX/HPL pathway, followed by those coming from MVA/MEP pathway and, in a lesser extent, from SK pathway. Pentyl leaf volatiles (PLV), green leaf volatiles (GLV) and VOCs involved in the resistance of grapevine against Plasmopara viticola were more abundant in CS than in T, especially when plants were associated with AMF. The volatilome profiles obtained revealed that some minor VOCs were only present in one of the two tested grapevine varieties. Mycorrhizal association increased the relative abundance (%) of VOCs derived from the SK pathway in T and that of GLV in CS.

Acknowledgements: To A. Urdiain, M. Oyarzun & H. Santesteban for technical support, Asociación de Amigos (UNAV) for D. Kozikova’s scholarship, Bioera SL for AMF, Ministerio de Ciencia e Innovación (Gobierno España) funded the research (Ref. PID2020-118337RB-IOO)

References:

1)  Velásquez A. et al. (2020) The arbuscular mycorrhizal fungus Funneliformis mosseae induces changes and increases the concentration of volatile organic compounds in Vitis vinifera cv. Sangiovese leaf tissue. Plant Physiol. Biochem. 155: 437-443, DOI 10.1016/j.plaphy.2020.06.048

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Goicoechea Nieves1*, Kozikova Daria1, Pascual Inmaculada1

1Environmental Biology department- Group of Stress Physiology in Plants. School of Sciences-BIOMA, University of Navarra. Irunlarrea 1, 31008-Pamplona, Spain

Contact the author*

Keywords

Cabernet Sauvignon, leaves, mycorrhizal symbiosis, Tempranillo, volatile organic compounds

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Phenolic composition of Cabernet Sauvignon wines from Argentina, Portugal and Spain

Grape and wine phenolic compounds have been shown to be highly related to both wine quality (color, flavor, and taste) and health-promoting properties (antioxidant and cardioprotective, among others). The aim of this work was to evaluate and compare the phenolic contents of Cabernet Sauvignon wines from different geographical areas and climatic conditions, namely from Argentina, Portugal and Spain vintage 2022. In addition, the phenolic profiles of the Portuguese wines from three vintages (2020, 2021, 2022) was compared.

The characterization of Vitis vinifera L cv. Cabernet sauvignon: the contribution of Ecklonia maxima seaweed extract

Biostimulants and biofertilizers are considered environmentally friendly and cost-effective alternatives to synthetic fertilizers, plant growth regulators and crop improvement products. Broadly, plant biostimulants are expected to improve nutrient use efficiency, tolerance to abiotic stress, quality traits and availability of nutrients in the soil or rhizosphere. Currently, seaweed extracts account for more than 33% of the total plant biostimulant market. Within this category, Ascophyllum nodosum (AN), is the most widely studied and applied in biostimulant formulations.

The colour pattern of flower arrangements influence wine tasters’ sensory description

The arrangements of flowers and wine counterparts are inextricably linked. Whether a fundamental aspect of tablescaping or acolytes to broader entertainment rituals, they have an entangled history since ancient times. The aim of this contribution is to verify the influence of visually delicate and robust flower arrangements on individual description of wines. Changes in the sensory description of wines were investigated during subjects’ (thirty-two participants) exposure to three different conditions: the presence of delicate, robust, or totally absent flower arrangements. In each condition, the same two wines were blind tasted: a wine previously defined as delicate – a Pinot Noir from Australia, and a wine known for its robust character – a Tannat from Uruguay.

Differences in metabolism among species and hybrids of the genus Saccharomyces during wine fermentation unveiled by multi-omic analysis 

Yeast species S. cerevisiae, S. uvarum, S. kudriavzevii and their hybrids present clear metabolic differences, even when we compared S. cerevisiae wine versus wild strain. These species and hybrids produced significantly higher amounts of glycerol, organic acids, 2,3-butanediol, and 2-phenyl ethanol and a reduction of the ethanol yield, properties very interesting in the sector to deal with climate change effects. To understand the existing differences, we have used several omics techniques to analyze the dynamics of the (intra- and extracellular) metabolomes and/or transcriptomes of representative strains of S. cerevisiae, S. uvarum, S. kudriavzevii, and hybrids.

Identification of a stable epi-allele associated with flower development and low bunch compactness in a somatic variant of Tempranillo Tinto

Grapevine cultivars are vegetatively propagated to preserve their varietal characteristics. However, spontaneous somatic variations that occur and are maintained during cycles of vegetative growth offer opportunities for the natural improvement of traditional grape cultivars. One advantageous trait for winegrowing is reduced bunch compactness, which decreases the susceptibility to pests and fungal diseases and favor an even berry ripening.