terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Application of antagonistic Metschnikowia strains against Botrytis cinerea in vineyards 

Application of antagonistic Metschnikowia strains against Botrytis cinerea in vineyards 

Abstract

Less and less chemical plant protection products are approved by the E U. Plant pathogenic fungi become increasingly resistant to the active ingredients that have been around for a long time. Besides, there is a valid demand for effective products that can be applied in organic cultivation.

We examined Metschnikowia strains under laboratory conditions in order to find effective strains against B. cinerea. The antimicrobial mechanism of these yeasts is based on the competition for the ferric ions from the environment. Metschnikowia cells release the pulcherriminic acid which chelates with Fe3+, forming the pigment pulcherrimin. The ability of M. pulcherrima of depleting Fe from the growth media is correlated with it’s ability to inhibit the growth of many microorganism. We compared the strains’ ability to produce pulcherrimin and their ability to inhibit different pathogenic fungi in laboratory conditions. Pulcherrimin production was also reported in the case of other yeast species. Krause et al. (2018) described four genes (PUL1-4) forming a PULcherrimin (PUL) gene cluster present in Kluyveromyces. lactis, K. aestuarii, M. fructicola and Zygotorulaspora mraki. We have also identified the four PULgenes in our effective M. pulcherrima strains.

We conducted field studies in three vintages using a specific M. pulcherrima strains. Based on our results, we can state that we have found an effective method to protect grape against B cinerea, which can be applied both in organic cultivation and also before harvest in conventional technology.

Acknowledgements: The authors would like to thank Anita Kovács, Ilona Szilágyi and Szilvia Struba for the profession technical assistance. This research was financed by the grant 2020-1.1.2-PIACI-KFI-2020-00130

References:

1) Krause D.J., Kominek J., Opulente D.A., Shen X.X., Zhou X., Langdon Q.K., DeVirgiliof J., Hulfachora A.B., Kurtzmanf C.P., Hittinger C.T. 2018. Functional and evolutionary characterization of a secondary metabolite gene cluster in budding yeasts. Proc. Natl. Acad. Sci. 115, 11030-11035. DOI: 10.1073/pnas. 1806268115

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Zoltán Kállai1*, Kinga Czentye1, Matthias Sipiczki1

1Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary

Contact the author*

Keywords

crop protection, bioprotection, antagonism, Metschnikowia, Botrytis cinerea 

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

A sensometabolomic approach to understand wine mouthfeel percepts

Targeted analytical methods can overlook compounds that are a priori unknown to play a role in the mouthfeel sensations. This limitation can be overcome with the information provided by untargeted metabolomic analysis using UPLC‐QTOF-MS. To this end, an untargeted metabolomic approach applied to 42 red wines has allowed development of a model with predictive capacity by cross-validation for the “dry”, “oily” and “unctuous” sensations perceived by a sensory panel. The optimal PLS model for “dry” retained compounds with positive regression coefficients (≥ 0.17) including a trimer procyanidin, a peptide, and four anthocyanins.

Effect of irrigation in cover cropping vineyards

Cover cropping in vineyard is a sustainable and alternative soil management system to conventional tillage that is gaining more and more importance among winegrowers and is being promoted, among other organizations, by the European Union through the eco-schemes of the Common Agricultural Policy.
However, the use of cover crops in Mediterranean viticultural environments is conditioned, to a large extent, by the availability of irrigation water which, in a context of global warming like the one we are experiencing, must be adjusted to savings strategies, supplying to the vine only what it needs in each moment.

Sensory profile of wines obtained from disease-resistant varieties in La Rioja

The European wine industry is facing multiple challenges derived from climate change and the pressure of different fungal diseases that are compromising the production of traditional varieties. A sustainable alternative maybe the adoption of resistant varieties.
In this study, we have evaluated the enological potential of 9 resistant varieties (5 white and 4 red varieties) in La Rioja. Microvinifications were carried out with three biological replications. Oenological parameters were very diverse with acid content varying from 2.6 g/L to 6.6 g/L.

The exploitation of Croatian grapevine genetic resources for the breeding of new resistant cultivars 

Croatian viticulture is mainly based on native grapevine varieties susceptible to various diseases and pests, which leads to unsustainable use of large amounts of pesticides. The sustainable development of viticulture in the future will only be possible by increasing the resistance of the grapevine through the development of new resistant varieties. Breeding programs have been launched in the leading wine-growing countries to develop resistant varieties possessing high-quality levels. Native cultivars from Croatia are not included in the breeding programs of other countries.

Development and validation of a free solvent UHPLC/MS-MS method to analyse melatonin and its precursors in Spanish commercial wines  

Melatonin is a bioactive compound present in foods and beverages such as wines. During alcoholic fermentation, yeast transforms tryptophan into certain indole compounds, including melatonin. This paper aims to develop and validate a free solvent analytical method by ultra-high performance liquid chromatography coupled with high resolution mass spectrometry (UHPLC/MS-MS) to determine melatonin and its precursors (L-tryptophan, tryptamine, serotonin, tryptophol, N-acetylserotonin, 5-hydroxytryptophan, and 3- indoleacetic) that appropriately prevent the matrix effect.