terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Characterization of non-cultivated wild grapevines in Extremadura (Spain) 

Characterization of non-cultivated wild grapevines in Extremadura (Spain) 

Abstract

Several Eurasian wild grapevine populations were found along Extremadura region (southwestern Spain). For conservation and study, one individual from four different populations (named L1, L2, L5 and L6) was vegetatively propagated and planted at Instituto de Investigaciones Agrarias Finca La Orden (CICYTEX), Badajoz. The aim of the present work was to characterize those conserved individuals from four different populations based on both an ampelographic description and a molecular analysis. Three vines per individual were studied. The ampelographic characterization was carried out according to 84 OIV descriptors from the list for grape varieties and Vitis species (2001). The genetic study, which includes a set of 13 microsatellite loci and 240 nuclear SNP data, was performed using total genomic DNA extracted from young leaves. Sexual organs (OIV 151) observed in L1 had fully developed stamens and reduced gynoecium (note 2) while L2, L5 and L6 were female (note 4). Attending berry size (OIV 220 and 221) two groups were found: (i) very short and narrow (1) in L5 and L6, and (ii) medium (3/5) in L2. Consequently, mean berry weight was larger in L2 (1.05 g) than in the other populations (< 0.5 g). Regarding the seeds (4 replicates of n = 100), their length was very short for all population except L2 (OIV 242). The wide/length coefficient of seeds was around 0.7 for L5 and L6 and significant lower in L2. The genetic study found four different genotypes. All of them were unique among the about 3000 genotypes existing in the ICVV-SNP database. The genetic structure analysis identified as Vitis vinifera subsp. sylvestris (Gmelin) (membership Q value > 0.9) the individuals from populations L5 and L6, while L2 corresponds most probably to Vitis vinifera subsp. vinifera (cultivated). Future studies on the evaluation of grapes and wines will help to better understand the potential oenological application of the wild grapevines characterized in this work.

Acknowledgements: We would like to express our gratitude to Miguel Lara (IFAPA, Rancho de la Merced, Jeréz de la Frontera, Cádiz, Spain) for the help with the ampelographic description.

 

This research was financially supported by Junta de Extremadura with European Regional Development Fund (ERDF) co-funding, through projects IB18102, GR21196 (Research Group AGA001), and AGROS at CICYTEX. L. Martín was supported by the DOC-INIA 2015 Program (Agencia Estatal de Investigación e Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria. Spain).

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Mª Teresa Guerra1, Mª Victoria Alarcón2, Francisco Vázquez2, Mª Esperanza Valdés3, Javier Ibáñez4, Laura Martín2*

1 Centro Universitario Santa Ana – Almendralejo (Badajoz). Spain
2 Instituto de Investigaciones Agrarias Finca La Orden-Valdesequera. Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX). Guadajira (Badajoz). Spain
3 Instituto Tecnológico Agroalimentario de Extremadura (CICYTEX). Badajoz. Spain
4 Instituto de Ciencias de la Vid y el Vino (ICVV). Logroño. Spain

Contact the author*

Keywords

ampelography, microsatellites, SNP, Vitis vinifera ssp. sylvestris (Gmelin) Heg

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Chemical profiling and sensory analysis of wines from resistant hybrid grape cultivars vs conventional wines

Recently, there has been a shift toward sustainable wine production, according to EU policy (F2F and Green Deal), to reduce pesticide usage, improve workplace health and safety, and prevent the impacts of climate change. These trends have gained the interest of consumers and winemakers. The cultivation of disease resistant hybrid grape cultivars (DRHGC), known as ‘PIWI’ grapes can help with these objectives [1]. This study aimed to profile white and red wines produced from DRHGC in South Tyrol (Italy). Wines produced from DRHGCs were compared with conventional wines produced by the same wineries. The measured parameters were residual sugars, organic acids, alcohol content, pigments and other phenolics by LC-QqQ/MS, colorimetric indexes (CIELab); and volatile profiles (HS-SPME-GCxGC-ToF/MS [2]).

Late winter pruning induces a maturity delay under temperature-increased conditions in cv. Merlot from Chile

Chile is considered vulnerable to climate change; and these phenomena affect several mechanisms in the grape physiology and quality. The global temperature increase affects sugar contents, organic acids, and phenolic compounds in grapes, producing an imbalance maturity. In this sense, an alternative to reduce the impact is to perform pruning after vine budburst, known as “Late Pruning” (LP).

Grape pomace, an active ingredient at the intestinal level: Updated evidence

Grape pomace (GP) is a winemaking by-product particularly rich in (poly)phenols and dietary fiber, which are the main active compounds responsible for its health-promoting effects. GP-derived products have been proposed to manage cardiovascular risk factors, including endothelial dysfunction, inflammation, hypertension, hyperglycemia, and obesity. Studies on the potential impact of GP on gut health are much more recent. However, it is suggested that, to some extent, this activity of GP as a cardiometabolic health-promoting ingredient would begin in the gastrointestinal tract as GP components (i.e., (poly)phenols and fiber) undergo extensive catabolism, mainly by the action of the intestinal microbiota, that gives rise to low-molecular-weight bioactive compounds that can be absorbed and utilized by the body.

Vineyard yield estimation using image analysis: assessing bunch occlusions and its dependency on fruiting zone canopy features

Performing accurate vineyard yield estimation is of upmost importance as it provides important benefits to the whole vine and wine industry. Recently, image-analysis approaches have been explored to address this issue however this approach has as main challenge the bunch occlusion, mostly by vegetation but also by neighboring bunches. The present work aims at assessing the magnitude of bunch occlusion by neighboring bunches and to evaluate its dependency on a selection of vegetative and reproductive vine parameters assessed at fruiting zone. Forty vine segments (1 m) of two vineyard plots of the white cultivars ‘Alvarinho’ and ‘Arinto’ were assessed for vegetative and reproductive features at fruiting zone and imaged with a 2D camera.

New crossbreed winegrape genotypes cultivated under rainfed conditions in a semi-arid Mediterranean region

Traditional drought tolerant varieties such as Cabernet Sauvignon, Monastrell, and Syrah [1], have been used as parents in the grapevine breeding program initiated by the Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA) in 1997 [2]. This work presents the results of evaluating three new genotypes obtained from crosses between ‘Monastrell’ and ‘Cabernet Sauvignon’ (MC16 and MC80) and between ‘Monastrell’ and ‘Syrah’ (MS104), comparing their performance under conditions of water scarcity and high temperatures with that of their respective parental varieties. For this purpose, the six genotypes were cultivated under controlled irrigation conditions (60% ETc) and rainfed conditions.