terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Foliar application of urea improved the nitrogen composition of Chenin grapes

Foliar application of urea improved the nitrogen composition of Chenin grapes

Abstract

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison. In all solutions were added 1ml/l of Tween 80 ® surfactant. In addition, the experimental design was a randomized block design with three. Also, each treatment was repeated one week later. The grapes were harvest at optimum maturity (20º Brix), harvested by hand and transported in separate boxes for each treatment and control. Subsequently, grapes samples were analysed to determine the oenological parameters (official methods), and the nitrogen composition, ammonium and amino nitrogen (OenoFoss™ autoanalyzer). In addition, the yeast assimilable nitrogen (YAN) content was calculated as the sum of ammonium and amino nitrogen. Finally, the results were studied statistically by analysis of variance (ANOVA) and differences between samples were compared by Duncan’s test (p-value ≤ 0,05). In 2023 vintage, C1 and C3 treatments improved the amino nitrogen content. In addition, ammonium nitrogen content was increased by C2 and C3 treatments. And YAN content was increased by all urea treatments and C3 treatment was the one that most increased the YAN concentration in must samples. Consequently, foliar applications of urea, applied at veraison, could be an agronomic practice to improve the nitrogen concentration in Chenin grapes.

Acknowledgements: Many thanks to the collaboration with researchers from Estación Experimental Mendoza. R. M.-P. thanks National Institute for Agricultural and Food Research and Technology (INIA) and Government of La Rioja for the predoctoral contract.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Rebeca Murillo-Peña 1*, Teresa Garde-Cerdán 1, Mariela Assof 2,3, Santiago Sari 3, José María Martínez-Vidaurre 1, Martín Fanzone 2,3

1Instituto de Ciencias de la Vid y del Vino (Gobierno de La Rioja, CSIC, Universidad de La Rioja) Ctra. de Burgos, Km. 6. CP 26007 Logroño, La Rioja, España
2Universidad Juan Agustín Maza. Centro de Estudios Vitícolas y Agroindustriales. Lateral Sur del Acceso Este 2245.CP 5519 Guaymallén, Mendoza, Argentina
3Instituto Nacional de Tecnología Agropecuaria. Estación Experimental Mendoza. San Martín 3853. CP 5507EVY, Luján de Cuyo, Mendoza, Argentina

Contact the author*

Keywords

yeast assimilable nitrogen, veraison, Vitis vinifera L

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Stomatal abundance in grapevine: developmental genes, genotypic variation, and physiology

Grapevine cultivation is threatened by the global warming, which combines high temperatures and reduced rainfall, impacting in wine quality and even plant survival. Breeding for varieties resilient to these challenges must address plant traits such as tolerance to supraoptimal temperatures and optimized water use efficiency while minimizing productivity and quality losses. Stomatal abundance (SA) determines the maximum leaf potential for transpiration and thus water loss and cooling. Since SA results from a developmental process during leaf emergence and growth, knowledge on the genetic control of this process would provide specific targets for modification.

Addition of glutathione-rich inactivated yeasts to white musts: effects on wine composition and sensory quality

Glutathione plays a key role in preventing some oxidative processes during winemaking. This molecule limits the must enzymatic oxidation, reacts with caffeic acid and generates a colourless compound that prevents subsequent browning. It also has a protective effect on wine aroma, preventing the oxidation of the volatile compounds with a high sensory impact.

Long-lasting flavour perception of wines treated with oenological additives considering the individual PROP taste-phenotype

The use of oenological additives is becoming a common practice due to the technological and sensory properties they provide to the wines. However, the number of studies focused on the impact that these additives might induce on wine flavor perception during wine tasting is still quite scarce. The aim of this work was to evaluate the effect of three different types of common oenological additives: two oenotannins (ellagitannin and gallotannin) and a commercial preparation of yeast mannoproteins on the long-lasting flavor perception (aroma and astringency).

Effect of foliar application of Ca, Si and their combination on grape volatile composition

Calcium (Ca) is an important nutrient for plants which plays key signaling and structural roles. It has been observed that exogenous Ca application favors the pectin accumulation and inhibition of polygalacturonase enzymes, minimizing fruit spoilage. Silicon (Si) is a non-essential element which has been found to be beneficial for improving crop yield and quality, as well as plant tolerance to diverse abiotic and biotic stress factors. The effect of Si supply to grapevine has been assessed in few investigations, which reported positive changes in grape quality and must composition.

Integrative study of Vitis biodiversity for next-generation breeding of grapevine rootstocks 

Drought is one of the main challenges for viticulture in the context of global change. The choice of rootstock could be leveraged for vineyard adaptation to drought as we can improve plant performance without modifying the scion variety. However, most of the existing rootstocks, selected over a century ago, have a narrow genetic background which could compromise their adaptive potential.