terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Phenotyping bud break and trafficking of dormant buds from grafted vine

Phenotyping bud break and trafficking of dormant buds from grafted vine

Abstract

In grapevine, phenology from bud break to berry maturation, depends on temperature and water availability. Increases in average temperatures accelerates initiation of bud break, exposing newly formed shoots to detrimental environmental stresses. It is therefore essential to identify genotypes that could delay phenology in order to adapt to the environment. The use of different rootstocks has been applied to change scion’s characteristics, to adapt and resist to abiotic and biotic stresses[1]. It is the main objective of this project to identify rootstock genotypes that could contribute in delaying bud burst in order to adapt to extreme climate events. For this, first we investigated the cold requirements to achieve a homogenous bud break pattern from cuttings of Merlot, Cabernet Sauvignon and Chasselas[2]. Interestingly, Merlot needs longer cold exposure times to achieve 100% bud break. Moreover, bud break of different Vitis species was assessed in the field. Two late and one early Vitis were identified which will be used as rootstock in grafts with Cabernet Sauvignon. Bud break times of these combinations will be assessed to identify changes in bud dormancy in the scion. Furthermore, buds from Cabernet Sauvignon, Merlot and RGM are being sampled for a year-cycle to follow bud development, dormancy and bud break by RNAseq and metabolomics. This, coupled with QTLs identified from bud break of a population of Cabernet Sauvignon x Vitis riparia, will allow the identification of genes involved in dormancy and bud break. Lastly, to understand the rootstock/scion/bud communication, traficking of calceine in cuttings containing dormant and non-dormant buds was studied to indicate the moment in which this molecule is able to enter the bud. Results show that calceine is not able to enter the bud in either condition therefore, 32P is being used to rule out a possible molecular size effect.

Acknowledgements: We thank Lysiane Brocard from the Bordeaux Imaging Center for the advice on microscopy and Bordeaux Plant Sciences from the Université de Bordeaux for funding this research through the Grand Programme de Recherche (GPR).

1)  Miele A. (2019). Rootstock-scion interaction:6. Phenology, chilling and heat requirements of Cabernet Sauvignon grapevine. Revista Brasileira de Fruticultura 41.

2)  Dokoozlian, N.K. 1999. Chilling Temperature and Duration Interact on the Budbreak of ‘Perlette’ Grapevine Cuttings. HORTSCIENCE, VOL. 34(6), OCTOBER 1999.

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Anne Marie Labandera Nadeau1*, Elisa Marguerit1, Jean-Pascal Tandonnet1, Coralie Chesseron2, Alain Mollier2, Pierre Gastou1, Marina de Miguel Vega1, Bénédicte Wenden3, Sarah Cookson1

1 Ecophysiology and Functional Genomics of the Grapevine – INRAE Bordeaux Aquitaine
2 Interaction Sol Plante Atmosphére (ISPA) – INRAE Bordeaux Aquitaine

Biologie du Fruit et Pathologie – INRAE Bordeaux Aquitaine

Contact the author*

Keywords

bud break, dormancy, communication, grafting

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Control of bacterial growth in carbonic maceration winemaking through yeast inoculation

Controlling the development of the bacterial population during the winemaking process is essential for obtaining correct wines[1]. Carbonic Maceration (CM) wines are recognised as high-quality young wines. However, due to its particularities, CM winemaking implies a higher risk of bacterial growth: lower SO2 levels, enrichment of the must in nutrients, oxygen trapped between the clusters… Therefore, wines produced by CM have slightly higher volatile acidity values than those produced by the destemming/crushing method[2].

Extreme vintages affect grape varieties differently: a case study from a cool climate wine region

Eger wine region is located on the northern border of grapevine cultivation zone. In the cool climate, terroir selection is one of the foundations of quality wine making. However, climate change will have a significant impact on these high value-added vineyards. This study presents a case study from 2021 and 2022 with the investigation of three grape varieties (Kadarka, Syrah, Furmint). The experiment was conducted in a steep-sloped vineyard (Nagy-Eged hill) with a southern exposure.

Bioprotection of grape must by Metschnikowia sp.: genericity and mechanism

The market trend heads to food products with less chemical inputs, including in oenology. During the winemaking process, sulfites are commonly use to avoid microbiological contamination and stabilization of the wine thanks to its antimicrobial and antioxidant activities. Nevertheless, this use is not without consequences on human health and environment, leading for example to allergic reaction and pollution. A biological alternative to these sulfites has emerges: the bioprotection.

Accumulation of deleterious mutations in grapevine and its relationship with traits of interest for wine production and resilience

Deleterious mutations that severely reduce population fitness are rapidly removed from the gene pool by purifying selection. However, evolutionary drivers such as genetic drift brought about by demographic bottlenecks may comprise its efficacy by allowing deleterious mutations to accumulate, thereby limiting the adaptive potential of populations. Moreover, positive selection can hitchhike mildly deleterious mutations due to linkage caused by lack of recombination. Similarly, in the context of species domestication, artificial selection mimics these evolutionary processes, which can have undesirable consequences for production and resilience. In this study, we evaluated the extent of the accumulation of deleterious mutations and the magnitude of their effects (also known as genetic load) at the whole-genome scale for ca.

The effect of ozonated water treatment on the metabolic profile and resistance of vines to Downy and powdery mildew 

Ozone is a potent oxidizing compound that quickly decomposes into oxygen without residues. Previous works reported that ozone is not only a disinfectant that directly harms the pathogens of the vine but also activates systemic defense systems in the plant by activating oxidative stress. We assume these systemic defense mechanisms are essential to the vines’ resistance to downy and powdery mildew (Plasmopara viticola & Erysiphe necator, respectively). The goals of the research are to examine the effect of spraying with ozone water on the plant’s resistance against the mentioned pathogens as well as to characterize the metabolic profile of the plants treated with ozone as well as physiological characteristics in the vines such as the level of Photosynthesis and crop yield. Vines in the vineyard sprayed with ozone water at concentrations of 2 and 4 PPM weekly and biweekly, untreated control & conventional spray. Leaves were taken from vines 2,4,7,9 and 11 days after exposure to ozone and inoculated with the pathogens.