terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Impact of temperature and solar radiation on grape composition variability in the Saint-Emilion winegrowing area 

Impact of temperature and solar radiation on grape composition variability in the Saint-Emilion winegrowing area 

Abstract

Grape composition is strongly influenced by climate conditions. Their expected modifications in near future, notably because of increased temperatures, could significantly modify the biochemical composition of berries at harvest, and thus wine typicity and quality. Elevated temperatures favor sugar accumulation in grapes, enhance malic acid degradation and modify the amino acid content. They also reduce significantly anthocyanin accumulation in Merlot,leading to the imbalance between anthocyanins and sugars, while no significant effects on final anthocyanin levels were reported in Tempranillo[1] and finally affect aromas or aroma precursors. However, at local scale, several other environmental factors also contribute to the overall berry composition variability between nearby vineyards and the impact of each individual factor is difficult to identify. In this context, the objective of our study was to clarify the effect of temperature variability across a network of vineyards from the Saint-Emilion and Pomerol wine producing areas, by selecting well-characterized Merlot plots presenting significant temperature differences and gradients at various time scales linked to environmental factors[2].

The selected sites were characterized by similar soils, vine age and training system. The average temperature difference during the ripening period was about 2°C between the coldest and warmest sites. Samples of 20 to 50 berries were collected at different phenological stages from véraison to maturity in 2019 and 2020. In order to further investigate the putative impact of cluster exposure to solar radiation, the biochemical composition of berries in clusters from each side of differently oriented rows (E/W or N/S) was evaluated separately and combined with RNA-seq technology to screen differentially expressed genes at the transcriptome level.

Results showed significant effects on grape composition and gene expression profiles in relation with temperature, site, and bunch azimuth, with a noteworthy impact of temperature and solar radiation exposure on anthocyanin content in grape skins.

Acknowledgements: this project was supported by “Conseil Interprofessionnel des Vins de Bordeaux “ (CIVB) n°51640/18008/9/10

References :

  1. Arrizabalaga-Arriazu, M. et al, (2020). High temperature and elevated CO2 modify berry composition of different clones of grapevine (Vitis vinifera L.) cv. Tempranillo, Front. Plant Sci. dec 2020, 11:603687. doi: 10.3389/fpls.2020.603687
  2. de Rességuier L et al (2020). Temperature variability at local scale in the Bordeaux area. Relations with environmental factors and impact on vine phenology. Front Plant Sci. may 20,11:515. doi: 10.3389/fpls.2020.00515

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Ghislaine Hilbert-Masson1, Christel Renaud1, Philippe Pieri1, Laure de Rességuier1, Cécile Thibon2, Céline Cholet2, David Lecourieux1, Sabine Guillaumie1, Nathalie Ollat1

1 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882 Villenave d’Ornon, France
2 Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, 33140 Villenave d’Ornon, France / Bordeaux Sciences Agro, 33170 Gradignan, France

Contact the author*

Keywords

vineyard, Merlot, climate change, solar radiation, metabolites, anthocyanins

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

New oenological criteria for selecting strains of Lachancea thermotolerans for wine technology

The study conducted various fermentations of different grape juices using various strains of Lachancea thermotolerans and one strain of Saccharomyces cerevisiae. Because of the new conditions caused by climate change, wine acidity must be influenced as well as the volatile profile. Non-Saccharomyces yeasts such as L. thermotolerans are real options to mitigate the impact of climate change in wine production.

Using climate services to project grapevine varietal adequation under climate change – application to cv. Tempranillo in the Douro wine region

Vine growth circumstances are becoming warmer and drier because of climate change. Higher temperatures advance ripening to a point in the season less conducive to the production of fine wine, while drought reduces yields (Van Leeuwen et al., 2019). Several wine-producing regions around the world have already recognized threats to their viticultural viability (Santos et al., 2020). An economical and cost-effective strategy for adaptation is the employment of late-ripening, drought-resistant plant material (varieties, clones, and rootstocks).

Application of antagonistic Metschnikowia strains against Botrytis cinerea in vineyards 

Less and less chemical plant protection products are approved by the E U. Plant pathogenic fungi become increasingly resistant to the active ingredients that have been around for a long time. Besides, there is a valid demand for effective products that can be applied in organic cultivation.
We examined Metschnikowia strains under laboratory conditions in order to find effective strains against B. cinerea. The antimicrobial mechanism of these yeasts is based on the competition for the ferric ions from the environment. Metschnikowia cells release the pulcherriminic acid which chelates with Fe3+, forming the pigment pulcherrimin.

Photoprotective extracts from agri-food waste to prevent the effect of light in rosé wines 

Light is responsible for adverse reactions in wine including the formation of unpleasant flavors, loss of vitamins or photodegradation of anthocyanins. Among them, the riboflavin degradation leads to the formation of undesirable volatile compounds, known as light-struck taste. These photo-chemical reactions could be avoided by simply using opaque packaging. However, most rosé wines are kept in transparent bottles due to different commercial reasons. Some agri-food waste extracts have been studied for their photoprotective action which turn to be highly correlated with phenolic content [1].

Volatilome in grapevine leaves is defined by the variety and modulated by mycorrhizal symbiosis

Volatile organic compounds (VOCs) constitute a diverse group of secondary metabolites key for the communication of plants with other organisms and for their adaptation to environmental and biotic stresses. The emission of these compounds through leaves is also affected by the interaction of plants with symbiotic microorganisms, arbuscular mycorrhizal fungi (AMF) among them [1]. Our objective was to know the concentration and profile of VOCs emitted by the leaves of two grapevine varieties (Tempranillo, T, and Cabernet Sauvignon, CS, grafted onto R110 rootstocks), inoculated or not with a consortium of five AMF (Rhizophagus irregularis, Funneliformis mosseae, Septoglomus deserticola, Claroideoglomus claroideum and C. etunicatum).