terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 White grape must processed by UHPH as an alternative to SO2 addition: Effect on the phenolic composition in three varieties

White grape must processed by UHPH as an alternative to SO2 addition: Effect on the phenolic composition in three varieties

Abstract

The quantity and distribution of polyphenols in musts play a fundamental role in the white winemaking. This is because these substances are exposed to oxidation reactions, which are catalysed by the polyphenol oxidase (PPO), leading to a decrease in the quality of the wines produced. PPO is inactivated by SO2, but currently, due to the restrictions of the legislation, other methodologies are being investigated. Ultra-High Pressure Homogenization (UHPH) is a non-thermal physic technology that exerts an ultrahigh pressure pumping (>200 MPa) of a fluid through a valve in a continuous system. Passing through the valve causes a series of mechanical forces (impact, shear, cavitation, friction) which produce an antimicrobial and anti-enzymatic effect, as well as nanofragmentation in biopolymers. Since both, phenolic composition and PPO activity, depend on the variety, the research of the response of musts from different varieties to this technique is essential. This work investigates, by using HPLC techniques, the response of polyphenol oxidase activity, flavonols, flavanols, phenolic acids and total phenols to the application of a) the UHPH technique (working flow rate: 60 L/h, at 300 ± 3 MPa, inlet T of 4ºC, in-valve T of 95 ± 2 ºC for less than 0.2 s and an outlet T of 14 ºC) and b) SO2 (total dose 60 mg/L) of musts of Xarel·lo (Xar), Moscatel de Alexandria (M) and Garnacha blanca (Gb) from the 2022 vintage. The impact of the techniques applied depended on the variety considered and the effectiveness of UHPH could be established in the following pattern: Xar ≥ M > Gb. Moreover, phenolic acids were more sensitive to the action of SO2 than the UHPH. In general, with the exception of M must, phenolic acids, flavanols and total phenols responded similarly to both treatments applied.

Acknowledgements: This work is founded by Operational Groups of the European Association for Innovation (AEI) in terms of agricultural productivity and sustainability (operation 16.01.01 of the Rural Development Program of Catalonia (PDR) 2014-2022). Generalitat de Catalunya.

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

M. Esperanza Valdés-Sánchez1, Daniel Moreno-Cardona1, Nieves Lavado-Rodas1, Angela Fondon-Aguilar1, Gemma Roca-Domènech2 and Anna Puig-Pujol2

1Food and Agriculture Technology Institute of Extremadura (CICYTEX_INTAEX). Adolfo Suárez s/n Avenue, Badajoz, 06071, Spain
2INCAVI-IRTA. Catalan Institute of Vine and Wine – Institute of Agrifood Research and Technology. Plaça Àgora, 2. 08720 Vilafranca del Penedès, Barcelona, Spain

Contact the author*

Keywords

Xarel·lo, Moscatel, Garnacha blanca, flavonols, flavanols, phenolic acids

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Oxidability of wines made from Spanish minority grape varieties

The phenolic profile of a wine plays an essential role in its oxidative capacity and in both white and red wines it defines its shelf life[1]. The study of minority varieties to produce wines with peculiar characteristics necessarily includes the phenolic and oxidative characterization of the wines produced. This paper presents the study of wines made from 24 minority and majority white and red grape varieties, focusing on phenolic characteristics (total phenols, slightly polymerized phenols, highly polymerized phenols, anthocyanins…), color, as well as parameters related to the oxidability of the wines and their capacity to consume oxygen [2].

Impact of polyclonal selection for abiotic stress tolerance on the yield and must quality traits of grapevine varieties

The effects of climate change in viticulture are currently a major concern, with heat waves and drought affecting yield, wine quality, and in extreme cases, even plant survival. Ancient grapevine varieties have high intravarietal genetic variability that so far has been explored successfully to improve yield and must quality. Currently, there is little information available on intravarietal variability regarding responses to stress. In the current work, the intravarietal genetic variability of several Portuguese varieties was studied for yield, must quality, and tolerance to abiotic stress, through indirect, rapid, and nondestructive measurements carried out in the field.

Effect of spray with autochthonous Trichoderma strains and its secondary metabolites on the quality of Tempranillo grape

Trichoderma is one of the most widely used fungal biocontrol agents on vineyards due to its multiple benefits on this crop, such as its fungicidal and growth promoting capacity. In this work, we have analyzed the effect on the concentration of nutrients in grapevine leaves and on the quality of the grape must after spraying an autochthonous strain of Trichoderma harzianum and one of the main secondary metabolites produced by this genus, 6-pentyl-α-pyrone (6PP).

Late winter pruning induces a maturity delay under temperature-increased conditions in cv. Merlot from Chile

Chile is considered vulnerable to climate change; and these phenomena affect several mechanisms in the grape physiology and quality. The global temperature increase affects sugar contents, organic acids, and phenolic compounds in grapes, producing an imbalance maturity. In this sense, an alternative to reduce the impact is to perform pruning after vine budburst, known as “Late Pruning” (LP).

Effects of long-term drought stress on soil microbial communities from a Syrah cultivar vineyard

Changes in the rainfall and temperature patterns affect the increase of drought periods becoming one of the major constraints to assure agricultural and crop resilience in the Mediterranean regions. Beside the adaptation of agricultural practices, also the microbial compartment associated to plants should be considered in the crop management. It is known that the microbial community change according to several factors such as soil composition, agricultural management system, plant variety and rootstock.