terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Control of bacterial growth in carbonic maceration winemaking through yeast inoculation

Control of bacterial growth in carbonic maceration winemaking through yeast inoculation

Abstract

Controlling the development of the bacterial population during the winemaking process is essential for obtaining correct wines[1]. Carbonic Maceration (CM) wines are recognised as high-quality young wines. However, due to its particularities, CM winemaking implies a higher risk of bacterial growth: lower SO2 levels, enrichment of the must in nutrients, oxygen trapped between the clusters… Therefore, wines produced by CM have slightly higher volatile acidity values than those produced by the destemming/crushing method[2].

In this work, the bacteria present in CM vinifications under different yeast inoculation conditions were studied, in order to evaluate inoculation as a bacterial control strategy. For this purpose, three conditions were assayed: spontaneous fermentation, “pied de cuve”, and active dry yeast (ADY) inoculation.

The results showed that in the non-inoculated wines, a high bacterial population development was present in the tanks, and the finished wines showed high volatile acidity values, which did not occur in the inoculated vinifications. Thus, the control of the yeast population seems to be an effective tool to avoid bacterial alterations in CM vinifications.

Acknowledgements: This study has been financed from the Project RTI2018-096051-R-C31/C33 (MCIU/AEI/FEDER; UE).

References:

1)  Bartowsky E. J. (2009) Bacterial spoilage of wine and approaches to minimize it. Lett Appl Microbiol, 48:149-156. https://doi.org/10.1111/j.1472-765X.2008. 02505.x

2)  Santamaría P. et al (2022) Difficulties associated with small-scale production of carbonic maceration wines. Fermentation, 8, 27. https://doi.org/10.3390/fermentation8010027

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

A. R. Gutiérrez1*, P. Santamaría1, L. González-Arenzana1, P. Garijo1, C. Olarte2, and S. Sanz2

1 ICVV, Instituto de Ciencias de la Vid y el Vino Universidad de La Rioja, Gobierno de La Rioja, CSIC, Finca La Grajera, Ctra. LO-20- salida 13, 26071, Logroño, Spain
2 Departamento de Agricultura y Alimentación. Universidad de La Rioja, Spain

Contact the author*

Keywords

carbonic maceration, yeast inoculation, lactic bacteria, acetic bacteria

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Application of an in vitro digestion model to study the bioaccessibility and the effect of the intestinal microbiota on the red wine proanthocyanidins 

Proanthocyanidins are important phenolic fraction for wine quality, contributing to astringency, bitterness and color. Their metabolism begins in the mouth and continues throughout the gastrointestinal tract; however, most of them are accumulated in the colon where are metabolized by the intestinal microbiota, giving rise to a whole series of phenolic acids that may have greater activity at physiological level than the precursors[1]. This study aimed to evaluate in vitro the bioaccessibility of proanthocyanidins in a red wine developed by Bodegas Pradorey, as well as to evaluate the potential effect of intestinal microbiota on polyphenols metabolism identifying and quantifying secondary metabolites.

Using climate services to project grapevine varietal adequation under climate change – application to cv. Tempranillo in the Douro wine region

Vine growth circumstances are becoming warmer and drier because of climate change. Higher temperatures advance ripening to a point in the season less conducive to the production of fine wine, while drought reduces yields (Van Leeuwen et al., 2019). Several wine-producing regions around the world have already recognized threats to their viticultural viability (Santos et al., 2020). An economical and cost-effective strategy for adaptation is the employment of late-ripening, drought-resistant plant material (varieties, clones, and rootstocks).

Effect of rising atmospheric CO2 levels on grapevine yield and composition by the middle of the 21st century: what can we learn from the VineyardFACE?

Atmospheric CO2 levels have been rising continuously since the industrial revolution, affecting crop physiology, yield and quality of harvest products, and grapevine is no exception [1]. Most of previously reported studies used potted plants in controlled environments, and explored grapevine response to relatively high CO2 levels, 700 ppm or more. The vineyardFACE, established in Geisenheim in 2012, uses a free air carbon dioxide enrichment (FACE) system to simulate a moderate (ambient +20%) increase in atmospheric CO2 in a vineyard planted with cvs. Cabernet-Sauvignon and Riesling grafted on rootstock 161-49 Couderc and SO4, respectively.

Exploring intra-vineyard variability with sensor- and molecular-based approaches 

The application of remote and proximal sensing is a fast and efficient method to monitor grapevine vegetative and physiological parameters and is considered valuable to derive information on associated yield and quality traits in the vineyard. Further details can be obtained by the application of molecular analysis at the gene expression level aiming at elucidating how pathways controlling the formation of different grape quality traits are influenced by spatial variability. This work aims at evaluating intra-vineyard variability in grape composition at harvest and at comparing this with remotely sensed canopy vegetation data and molecular-based approaches.

Tackling the 3D root system architecture of grapevines: a new phenotyping pipeline based on photogrammetry

Plant roots fulfil important functions as they are responsible for the acquisition of water and nutrients, for anchorage and stability, for interaction with symbionts and, in some cases, for the storage of carbohydrates. These functions are associated with the Root System Architecture (RSA, i.e. the form and the spatial arrangement of the roots in the soil). The RSA results from several biological processes (elongation, ramification, mortality…) genetically determined but with high structural plasticity.