GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 Grapevine bud fertility under elevated carbon dioxide

Grapevine bud fertility under elevated carbon dioxide

Abstract

Aims: Microscopic bud dissection is a common tool used to assess grapevine bud fertility and therefore to predict the yield of the following season. Grapevine yield has been shown to increase under elevated carbon dioxide (eCO2) concentration and was demonstrated under Free Air Carbon dioxide Enrichment (FACE) conditions. The effect of eCO2 on bud fertility in regards to this yield gain has not been investigated. However, little is understood about which yield components are affected and at what stage of development this occurs. The aim of this study was to determine the number and cross sectional area of the inflorescence primordia (IP), and the levels of primary bud necrosis (PBN) found in grapevine compound buds grown under two different CO2 conditions and relate this data to yield parameters at harvest of field grown vines.

Methods and results: Plant material was collected in February 2016 and 2017 from two Vitis vinifera cvs., Riesling and Cabernet Sauvignon growing in the VineyardFACE experimental site at Hochschule Geisenheim University (49° 59′ N, 7° 57′ E) in the Rheingau wine region, Germany. Bud dissections were performed at the University of Adelaide’s Waite Research Institute, Australia. There canes were stored at 4°C until dissection at room temperature. The first eight nodes of every cane were dissected and the compounds buds were assessed for primary bud necrosis (PBN), IP number and the cross sectional area of IP using image analysis.
No difference in IP number per node and subsequent number of bunches per shoot was observed between treatments in Riesling. However, larger cross sectional areas of IP were found in the compound buds grown under eCO2. This was not supported by higher bunch weights and yield of Riesling for the eCO2 treatment over the two years. Cabernet Sauvignon showed a higher IP number per node under eCO2 but no changes in bunch number per shoot for the two seasons. A larger cross sectional area of IP was observed under eCO2 treatment. This did translate into significantly higher bunch weights and yields of Cabernet Sauvignonover both seasons. Percentage of PBN was highest in the most basal node position along the fruiting cane. However, average PBN was not affected by eCO2 for both cultivars along the cane.

Conclusions

Microscopic bud dissection can be used as a predictive tool to capture an increased bunch size at an early stage of vine development. There was evidence of a cultivar dependent response to bud fruitfulness under eCO2. It will be of future interest to investigate whether higher carbohydrate levels could be responsible for the increase in IP area detectable at a very early stage of development under eCO2.
Significance and impact of the study:This study contributes to an improvement in ourexisting knowledge about grapevine bud fertility and yield potential particularly under changing climatic conditions.

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Yvette WOHLFART1, Cassandra COLLINS2, Manfred STOLL1

(1) Hochschule Geisenheim University, Department of General and Organic Viticulture, Von-Lade-Str. 1, 65366 Geisenheim, Germany
(2) School of Agriculture, Food and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, 5064, Australia

Contact the author

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Meso-scale geostatistical analysis: a method for improving experimental design

The growing region of Barolo DOCG certified wines is topographically complex. The region is famous for this complexity and for the associated terroir driven Nebbiolo grapes and wines derived distinctly from this varietal. Although it is recognized that the Barolo area is unusual topographically and it is assumed that this unusual topography lends to the inherit terroir, the specifics of this relationship are less well defined.

Stem growth disorder and xylem anatomy modifications during esca pathogenesis in grapevines

Esca is a grapevine vascular disease with detrimental consequences on vineyard yield and longevity. Recently, esca leaf symptom development has been shown to result in the occlusion of xylem vessels by tyloses in leaves and stems, leading to hydraulic failure. However, little is known regarding the response of xylem anatomy and stem growth to esca in different varieties . Here we studied the impact of esca leaf symptom development on grapevine physiology, stem growth, and xylem anatomy in two widespread cultivars, Cabernet sauvignon and Sauvignon blanc.

Closure permeability modulates the aroma expression of monovarietal white wines during bottle ageing

Bottle ageing is a critical period for wine quality, as it undergoes various chemical and sensory changes during storage. Ideally, a phase of qualitative ageing, during which wine sensory quality improves, is followed by a decline of quality. Understanding how different oenological variables influence these phases is a key challenge in modern winemaking. Recent studies highlighted the significant role of oxygen in modulating reactions involving volatile and non-volatile components, impacting aroma evolution during bottle aging. Oxygen exposure of wine during bottle ageing is mediated by closure.

Adjustments of water use efficiency by stomatal regulation during drought and recovery of Verona province grape varieties grafted on two different vitis hybrid rootstocks

Drought is considered to be the predominant factor both for determining the geographic distribution of vegetation and for restricting crop yields in agriculture. Furthermore

New insight the pinking phenomena of white wine

Pinking of white wine is an undesired change potentially occurring over storage, leading to the turning of color from yellow into salmon-red hue.