GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 Grapevine bud fertility under elevated carbon dioxide

Grapevine bud fertility under elevated carbon dioxide

Abstract

Aims: Microscopic bud dissection is a common tool used to assess grapevine bud fertility and therefore to predict the yield of the following season. Grapevine yield has been shown to increase under elevated carbon dioxide (eCO2) concentration and was demonstrated under Free Air Carbon dioxide Enrichment (FACE) conditions. The effect of eCO2 on bud fertility in regards to this yield gain has not been investigated. However, little is understood about which yield components are affected and at what stage of development this occurs. The aim of this study was to determine the number and cross sectional area of the inflorescence primordia (IP), and the levels of primary bud necrosis (PBN) found in grapevine compound buds grown under two different CO2 conditions and relate this data to yield parameters at harvest of field grown vines.

Methods and results: Plant material was collected in February 2016 and 2017 from two Vitis vinifera cvs., Riesling and Cabernet Sauvignon growing in the VineyardFACE experimental site at Hochschule Geisenheim University (49° 59′ N, 7° 57′ E) in the Rheingau wine region, Germany. Bud dissections were performed at the University of Adelaide’s Waite Research Institute, Australia. There canes were stored at 4°C until dissection at room temperature. The first eight nodes of every cane were dissected and the compounds buds were assessed for primary bud necrosis (PBN), IP number and the cross sectional area of IP using image analysis.
No difference in IP number per node and subsequent number of bunches per shoot was observed between treatments in Riesling. However, larger cross sectional areas of IP were found in the compound buds grown under eCO2. This was not supported by higher bunch weights and yield of Riesling for the eCO2 treatment over the two years. Cabernet Sauvignon showed a higher IP number per node under eCO2 but no changes in bunch number per shoot for the two seasons. A larger cross sectional area of IP was observed under eCO2 treatment. This did translate into significantly higher bunch weights and yields of Cabernet Sauvignonover both seasons. Percentage of PBN was highest in the most basal node position along the fruiting cane. However, average PBN was not affected by eCO2 for both cultivars along the cane.

Conclusions

Microscopic bud dissection can be used as a predictive tool to capture an increased bunch size at an early stage of vine development. There was evidence of a cultivar dependent response to bud fruitfulness under eCO2. It will be of future interest to investigate whether higher carbohydrate levels could be responsible for the increase in IP area detectable at a very early stage of development under eCO2.
Significance and impact of the study:This study contributes to an improvement in ourexisting knowledge about grapevine bud fertility and yield potential particularly under changing climatic conditions.

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Yvette WOHLFART1, Cassandra COLLINS2, Manfred STOLL1

(1) Hochschule Geisenheim University, Department of General and Organic Viticulture, Von-Lade-Str. 1, 65366 Geisenheim, Germany
(2) School of Agriculture, Food and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, 5064, Australia

Contact the author

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Towards the definition of a terroir of grape dehydration for the production of ‘Passito’ wines in Valpolicella (Italy)

Aim: The aim of this study was to investigate the relationship between the molecular response of grapes during postharvest dehydration and the specific environment of two naturally ventilated rooms (called ‘fruttai’), located in two different sites in Valpolicella

Effects of stress memory on grapevine resilience in response to recurrent drought and recovery events 

Plants have evolved different strategies to cope with environmental stresses and, although still debated, it was observed that they can remember past stress occurrence.
Anatomical and physiological adjustments have been observed in different grapevine cultivars after repeated drought exposure, however epigenetic, transcriptional and biochemical changes associated with drought-primed ecological memory have been poorly studied.
This work was conceived to test whether exposure to recurring events of mild drought could prime vines to endure severe drought stress. Particularly, we investigated whether the expected improved stress tolerance of Vitis vinifera cv Nebbiolo plants subjected over years to moderate and long-lasting water stress events (WS-primed) depended on molecular memory phenomena or on resetting of stress-induced signals.

WINE CONSUMER TRADE-OFF BETWEEN ORGANOLEPTIC CHARACTERISTICS AND SUSTAINABLE CLAIMS. AN EXPERIMENT ON RED WINES FROM BORDEAUX REGION

In economics, the perception of wine quality is not limited to sensorial characteristics: an indication of the region of production significantly affects the perception of quality and consumers’ WTP ([1]; [2]). However, [3] or more recently [4] show that even if a wine has an organic label, the taste of wine remains the predominant criterion in consumer preferences. The contribution of our experiment is to evaluate the impact of responsible attributes (organic label, Non Added Sulfites, HVE certification) on the appreciation of several red wines on the market. More than 280 consumers participated to the present study and they perform 25 tastings divided into 5 different sessions. 20 different red wines from Bordeaux Area are tasted.

Remote sensing and radiometric techniques applied to vineyards in two regions of Rio Grande do Sul, Brazil

The observation of Earth by satellites has demonstrated the feasibility of establishing differences between plant species, from their spectral features. The reflectance spectrum of vine plants follows this trend, being possible to identify vineyards in satellite images, among other species.

The science of fungi in grapevine: An essential new book covering all aspects of fungi in viticulture

Grapevine is one of the world’s most important cultivated plants, domesticated from the wild vine over 11,000 years ago. The fungi associated with it are doubtless as old as the plant itself. Despite their co-evolution with the vine over the centuries, it was only with the invention of the microscope in the seventeenth century that fungi started to be recognised.