GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 Riesling aroma composition in light of changing global temperatures – delving into the effects of warmer nights on the volatile profile of riesling grapes

Riesling aroma composition in light of changing global temperatures – delving into the effects of warmer nights on the volatile profile of riesling grapes

Abstract

Context and purpose of the study: Climate is a key parameter when the modulation of berry and subsequent wine composition is considered. Recent decades have already seen an increase in global surface temperatures, with a more pronounced effect on night temperatures. In Australia, very warm monthly minimum temperatures (two standard deviations higher than the historical average) increased from a 2% to 11 % frequency of occurrence, and very cool monthly night temperatures have declined by about a third (Barlow and Daly, 2017). Night time temperatures are known to influence transcriptomic responses in ripening grapes (Rienth et al., 2014), however, the effect on grape chemical composition, in particular on the aroma compounds, remains to be elucidated. Aroma compounds such as the terpenes and norisoprenoids are key to the quality of white wine varieties such as Riesling. Understanding both the synthesis and loss of these desirable compounds due to the effects of warmer night temperatures, is critical to understanding the need for implementation of suitable mitigation strategies to help cope with the effects of warming projected in the future.

Materials and Methods: Four sites in the Canberra wine region (Australian Capital Territory and New South Wales, Australia) were chosen based on climatic data and, historic cool night index. As such, sites were catalogued as having either warmer, cooler or intermediate temperature nights. Temperature, humidity and light sensors were installed from the véraison stage to monitor meso‐ and microclimatic parameters throughout the ripening period. Berries were collected every two weeks from véraison until commercial harvest for chemical analysis. Midday stem water potential was also measured at sampling to assess water stress levels. Chemical analyses included total soluble sugars, titratable acidity, pH, yeast assimilable nitrogen, carotenoids, and free and bound volatile compounds.

Results: Higher temperature summations significantly depressed the synthesis of important aroma compounds such as norisoprenoids and terpenes, with carotenoid concentrations also being significantly decreased. Conversely, the concentration of aldehydes such as E-2‐octenal and E-2‐nonanal were positively correlated with higher temperature summation throughout the overall ripening season. Night temperature appeared to have a more pronounced effect, particularly on the synthesis of terpenes, during the later stages of berry development, as previously observed by Rienth et al. (2014). At harvest, warmer night temperatures resulted in lower concentrations of terpenes (e.g. linalool and α‐ terpineol) and the C6 alcohols (e.g. 1‐hexanol) whilst a direct correlation to heat summation was less significant. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Joanna M. GAMBETTA1, John BLACKMAN1, Andrew HALL2, Leigh M. SCHMIDTKE1, Bruno HOLZAPFEL1,3

(1) National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW 2560, Australia
(2) Institute for Land, Water and Society, Charles Sturt University, Albury, NSW 2640, Australia
(3) New South Wales Department of Primary Industries, Wagga Wagga, Australia

Contact the author

Keywords

 Riesling, climate, night temperature, chemical composition, volatiles, carotenoids

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Importance of the Terror Variability Map (TVM) in Precision viticulture (PV): choice of methodology for soil classification

The Precision Viticulture (PV) is defined “as a management system that is information and technology based, is site specific and uses one or more of the following sources of data: soils, vigour, nutrients, pests, moisture, and yield among others, for optimum profitability, sustainability, and protection of the environment” (OIV, 2018, in process). The elements mentioned in the definition are an important part of the terroir components. The terroir is a tool In Viticulture, it is the analysis and study unit, and the variability of a certain situation can be due to any difference in every element or property of each factor that constitutes it, including the management.The soil and its management are those that bring the most variability to terroir.

From precursor identification to the study of the distribution of 3-methyl-2,4-nonanedione in red wines and spirits

Prematurely aged red wines are marked by intense prune and fig aromatic nuances that dominate the complex bouquet that can be achieved through bottle aging.

A fast and sensitive method for total tannin determination in wine based on the substoichiometric quenching of silicon-rhodamine conjugates

Tannins are chemically diverse polyphenols contributing to important sensory attributes of food and beverages. In wine, their structure and quantity depend on several factors, such as the grape variety, climate, soil, viticultural and enological practices and the wine-aging process.

Haplotype-resolved genome assemblies of Chasselas and Ugni Blanc

Haplotype-resolved genome assemblies were produced for Chasselas and Ugni Blanc, two heterozygous real-field genetic pool Vitis vinifera cultivars by combining high-fidelity long-read sequencing (HiFi) and high‐throughput chromosome conformation capture (Hi-C). The telomere-to-telomere full coverage of the chromosomes allowed us to assemble separately the two haplo-genomes of both cultivars and revealed structural variations between the two haplotypes of a given cultivar.

Quality assessment of partially dealcoholized and dealcoholized red, rosé, and white wines: physicochemical, color, volatile, and sensory insights

The global non-alcoholic wine market is projected to grow from USD 2.7 billion in 2024 to USD 6.97 billion by 2034, driven by health awareness, lifestyle shifts, and religious factors [1-3]. Consequently, the removal of alcohol can significantly alter the key quality parameters of wine.