terclim by ICS banner
IVES 9 IVES Conference Series 9 IMPACT OF GRAPE-ASSOCIATED MOLDS IN FRESH MUSHROOM AROMA PRODUCTION

IMPACT OF GRAPE-ASSOCIATED MOLDS IN FRESH MUSHROOM AROMA PRODUCTION

Abstract

Mycobiota encountered from vine to wine is a complex and diversified ecosystem that may impact grape quality at harvest and the sensorial properties of wines, thus leading to off-flavors [1-3]. Among known off-flavors in wine, fresh mushroom aroma (FMA) has been linked to some mold species, naturally pre-sent on grapes, producing specific volatile organic compounds (VOC) [4-5]. The most well-known are 1-octen-3-ol and 1-octen-3-one, although many other VOC are likely involved. To better understand the FMA defect, biotic and abiotic factors impacting growth kinetics and VOC production of selected fungal species in must media and on grapes were studied. In total, 18 fungal isolates, belonging to 7 genera and 9 species, were selected based on their off-odor production profiles on malt medium among 685 isolates from our working collection. Growth rates were measured using solid synthetic must (MS) and real must (MR) and compared to those obtained in liquid must by laser nephelometry. Sensorial analysis and VOC profiles (GC-MS) were also determined for the same isolates, individually or in co-cultures with two FMA producing Botrytis isolates, after growth on must and grapes. Among the generated physiological data, optimal growth temperatures were 27-28°C, 26-30°C, 21-22°C for Botrytis spp., Penicillium crocicola and P. citreonigrum, respectively, depending on the isolate. Fastest growth rates were observed for B. cinerea and P. crocicola, while Cladosporium subtilissimum and P. brevicompactum isolates were slowest. For VOC profiles, P. crocicola, P. bialowiezense and Clonostachys rosea produced known FMA compounds (1-octen-3-one and 1-octen-3-ol) at higher levels when co-inoculated with Botrytis spp. on grapes. For must trials, a species effect on VOC profiles was clearly observed (92 VOC identified). To confirm these findings, further co-inoculation studies were performed on two grape varieties (Meunier and Pinot noir) and, so far, sensorial analyses showed similar trends. Overall, this study provides novel knowledge about changes in fungal growth kinetics and VOC profiles in musts and on grapes. These results provide new insights for the wine making to better understand how FMA off-flavors are generated by molds.

 

1. Scott et al, 2022 doi.org/10.1016/B978-0-08-102067-8.00006-3
2. Steel et al, 2013 doi.org/10.1021/jf400641r
3. Rousseaux et al 2014 doi:10.1016/j.fm.2013.08.013
4. La Guerche et al, 2006 doi.org/10.1016/B978-0-08-102067-8.00006-3
5. Meistermann et al, 2020 (DOI:10.20870/oeno-one.2021.55.3.3004)

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Adrien Destanque1,2, Alexis Commereuc1, Flora Pensec1, Adeline Picot1, Anne Thierry3, Marie-Bernadette Maillard3, Louis Corol-ler, Sylvie Treguer-Fernandez1, Emmanuel Coton1, Marion Hervé2 and Monika Coton1*

1. Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280 Plouzané, France
2. Centre de Recherche Robert-Jean de Vogüé Moët Hennessy, F-51530 Oiry, France
3. INRAE, Institut Agro, UMR STLO, F-35000 Rennes, France

Contact the author*

Keywords

Mycobiot, growth modeling, volatile organic compounds (VOCs)

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

CONVOLUTIONAL NEURAL NETWORK TO PREDICT GENETIC GROUP AND SULFUR TOLERANCE OF BRETTANOMYCES BRUXELLENSIS

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

CHARACTERISTIC EXTRACTION OF THE PHENOL COMPOUNDS IN KOSHU (VITIS VINIFERA CV.) WINE DURING THE MACERATION

Koshu is one of the indigenous grape variety that has been grown in Japan for more than one thousand years. Recent research showed that it has 70% of Vitis vinifera genes. In 2010, the Koshu variety was included in ‘International List of Vine and Varieties and their Synonyms’ managed by the ‘International Organisation of Vine and Wine’ and has further fueled its popularity in Japan. It is the most cultivated variety for winemaking in Japan.
Koshu berries have light purple skins. The variety is mainly used to produce white wines such as an aromatic wine and a wine produced by sur lie method although various styles are produced.

INFLUENCE OF THE THICKNESS OF OAK ALTERNATIVES ON THE COMPOSITION AND QUALITY OF RED WINES

Aging red wines in oak barrels is an expensive and laborious process that can only be applied to wines with a certain added value. For this reason, the use of oak alternatives coupled with micro-oxygenation has progressively increased over recent years, because it can reproduce the processes taking place in the barrels more economically and quickly [1]. Several studies have explored how oak alternatives [2-5] can contribute to wine composition and quality but little is known about the influence of their thickness.

SENSORY DEFINITION OF A TECHNICAL UNAVOIDABLE TRANSFER OF AROMA COMPOUNDS VIA SEALING IN A BOTTLING LINE IN ORDER TO PREVENT PROSECUTION DUE TO FRAUDULENT AROMATIZATION OF A SUBSEQUENTLY FILLED WINE

In 2020, 12% of all bottled German wines were aromatized, which may increase further due to rising popularity of dealcoholized wines. As sealing polymers of a bottling line absorb aroma compounds and may release them into regular wines in the next filling¹, this unintentional carry-over bears the risk to violate the legal ban of any aromatization of regular wine. However, following EU legislation, German food control authorities accept a technical unavoidable transfer of aroma compounds, if this is of no sensory significance.

CHARACTERIZATION OF ENOLOGICAL OAK TANNIN EXTRACTS BY MULTI-ANALYTICAL METHODS APPROACH

Oak tannin extracts are commonly used to improve wine properties. The main polyphenols found in oak wood extracts are ellagitannins¹ that release ellagic acid upon hydrolysis and comprise numerous structures². Moreover, oak tannin extracts contain other compounds giving a complex mixture. Consequently, the official OIV method based on gravimetric analysis of the tannin fraction adsorbed on polyvinylpolypyrrolidone is not sufficient to describe their composition and highlight their chemical diversity.