terclim by ICS banner
IVES 9 IVES Conference Series 9 EFFECTS OF BIODYNAMIC VINEYARD MANAGEMENT ON GRAPE RIPENING MECHANISMS

EFFECTS OF BIODYNAMIC VINEYARD MANAGEMENT ON GRAPE RIPENING MECHANISMS

Abstract

Biodynamic agriculture, founded in 1924 by Rudolph Steiner, is a form of organic agriculture. Through a holistic approach, biodynamic agriculture seeks to preserve the diversity of agriculture and the existing interactions between the mineral world and the different components of the organic world. Biodynamic grape production involves the use of composts, herbal teas and mineral preparations such as 500, 501 and CBMT.

Several scientific studies have provided evidence on the effects of biodynamic farming on the soil, the plant and the wine. Numerous empirical opinions of wine growers support the existence of differences brought by such a management.

The objective of our study is to build a scientific experiment to validate this knowledge and opinion by providing understanding of the biological behavior of the plant and the grape, and, finally, of the differences observed on the wine.

Our trial aims at evaluating the effects of a biodynamic management on the mechanisms of grape ripening. It is conducted on 8 parcels of the Lafite Rothschild vineyard, 4 of which have been receiving biodynamic preparations since 2017 and 4 not.

The parameters of technological ( sugars, TA, malic acid, tartaric acid, pH), phenolic (glories method), and textural maturity (Penetrometry, Aw) of the berries from veraison onwards were monitored in the 8 plots. The content of polysaccharides and pectin was analyzed during the ripening period on the grape skins. Once harvested, the berries were tasted by a trained panel.

Depending on the parameters, differences were observed and seemed to confirm the empirical vision of biodynamic practitioners.

Further analyses will have to be carried out to confirm these observations and evaluate the mechanisms involved.

 

1. Botelho, Renato Vasconcelos, Roberta Roberti, Paola Tessarin, José María Garcia-Mina, et Adamo Domenico Rombolà. « Physiological Responses of Grapevines to Biodynamic Management ». Renewable Agriculture and Food Systems 31, no 5 (octobre 2016): 402-13. https://doi.org/10.1017/S1742170515000320.
2. Döring, Johanna, Matthias Frisch, Susanne Tittmann, Manfred Stoll, et Randolf Kauer. « Growth, Yield and Fruit Quality of Grapevines under Organic and Biodynamic Management ». Édité par S. Kaan Kurtural. PLOS ONE 10, no 10 (8 octobre 2015): e0138445. https://doi.org/10.1371/journal.pone.0138445.
3. Guzzon, R., S. Gugole, R. Zanzotti, M. Malacarne, R. Larcher, C. von Wallbrunn, et E. Mescalchin. « Evaluation of the Oenological Suitability of Grapes Grown Using Biodynamic Agriculture: The Case of a Bad Vintage ». Journal of Applied Microbiology 120, no 2 (février 2016): 355-65. https://doi.org/10.1111/jam.13004.
4. Meissner, Georg, Miriam Edith Athmann, Jürgen Fritz, Randolf Kauer, Manfred Stoll, et Hans Reiner Schultz. « Conversion to Organic and Biodynamic Viticultural Practices: Impact on Soil, Grapevine Development and Grape Quality ». OENO One 53, no 4 (18 octobre 2019). https://doi.org/10.20870/oeno-one.2019.53.4.2470.
5. Picone, Gianfranco, Alessia Trimigno, Paola Tessarin, Silvia Donnini, Adamo Domenico Rombolà, et Francesco Capozzi. « 1 H NMR Foodomics Reveals That the Biodynamic and the Organic Cultivation Managements Produce Different Grape Berries ( Vitis Vinifera L. Cv. Sangiovese) ». Food Chemistry 213 (décembre 2016): 187-95. https://doi.org/10.1016/j.foodchem.2016.06.077

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Manuela Brando¹, Eric Kohler², Yasuhiro Ishizaki¹, Soizic Lacampagne ¹ and Laurence Geny-Denis ¹

1. Université Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, 33140 Villenave d’Ornon, France
2. Château Lafite Rothschild, 33250 Pauillac, France

Contact the author*

Keywords

Biodynamics, viticulture, grapes, maturity

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

PRODUCTION OF A FUNCTIONAL BEVERAGE FROM WINEMAKING BY-PRODUCTS: A NEW WAY OF VALORISATION

In the challenge of transforming waste into useful products that can be re-used in a circular economy perspective, winery by-products can be considered as a source of potentially bioactive molecules such as polyphenols. The wine industry generates each year 20 million tons of by-products. Kombucha fermentation is an ancestral process which allow to increase the biological properties of tea by the action of a microbial consortium formed by yeasts and bacteria called SCOBY. It belongs to the field of healthy food for which the interest of consumers is growing. The objective of this work was to propose a new functional beverage made from winemaking by-products fermented by a Kombucha SCOBY.

‘TROPICAL’ POLYFUNCTIONAL THIOLS AND THEIR ROLE IN AUSTRALIAN RED WINES

Following anecdotal evidence of unwanted ‘tropical’ character in red wines resulting from vineyard interventions and a subsequent yeast trial observing higher ‘red fruit’ character correlated with higher thiol concentrations, the role of polyfunctional thiols in commercial Australian red wines was investigated.
First, trials into the known tropical thiol modulation technique of foliar applications of sulfur and urea were conducted in parallel on Chardonnay and Shiraz.1 The Chardonnay wines showed expected results with elevated concentrations of 3-sulfanylhexanol (3-SH) and 3-sulfanylhexyl acetate (3-SHA), whereas the Shiraz wines lacked 3-SHA. Furthermore, the Shiraz wines were described as ‘drain’ (known as ‘reductive’ aroma character) during sensory evaluation although they did not contain thiols traditionally associated with ‘reductive’ thiols (H2S, methanethiol etc.).

SUB-CRITICAL WATER: AN ORIGINAL PROCESS TO EXTRACT ANTIOXIDANTS COMPOUNDS OF WINE LEES

Wine lees are quantitatively the second most important wine by-product after grape stems and marc [1]. In order to recycle, distilleries recovered ethanol and tartaric acid contained in wine lees but yeast biomass is often unused. It has already been demonstrated that this yeast biomass could be upcycled to produce yeast extracts of interest for wine chemical stabilization [2]. In addition, it is well known that lees, during aging, release compounds that preserve wine from oxidation.

PERCEPTUAL INTERACTIONS PHENOMENA INVOLVING VARIOUS VOLATILE COMPOUND FAMILIES LINKED TO SOME FRUITY NOTES IN BORDEAUX RED WINES

Fruity notes play a key role in the consumer’s appreciation of Bordeaux red wines. If literature provides a lot of knowledge about the nature of volatile compounds involved in this fruity expression, the sensory phenomena involving these compounds in mixture still need to be explored. Considering previous sensory works about the impact of esters and some overripening compounds, the goal of this work was to study the implication of perceptual interactions involving red wine odorant compounds of diverse origins and described as potentially affecting fruity aromatic expression.

EXPLORING RED WINE TYPICITY OF CORBIÈRES: EVALUATION OF THE DEGREE OF IMPACT OF VINIFICATION PROCESS ON THE CHEMICAL COMPOSITION AND ORGANOLEPTIC PROPERTIES OF WINES FROM DIFFERENT TERROIR

It is important nowadays for wine producers to create a product that is an expression of their terroir, a concept including the interaction between a place (topography, climate, soil), the people (tradition, winemaking and viticultural practices) and the resulting product (grape varieties, wines) [1]. Nonetheless, wine’s typicity linked to those terroirs must be easily recognizable by consumers thanks to distinctive sensory characters and composition [2]. Among the compounds of interest, aromatic compounds and polyphenols play an important role in the quality of red wines, by impacting on the odour, color and astringency. To explore the influence of terroir factors, including climate, soil and human practices, on the chemical and sensory profile of wines, red wines from five terroirs of the Corbières appellation were subjected to a general study approach.