terclim by ICS banner
IVES 9 IVES Conference Series 9 EVALUATION OF INDIGENOUS CANADIAN YEAST STRAINS AS WINE STARTER CULTURES ON PILOT SCALE FERMENTATIONS

EVALUATION OF INDIGENOUS CANADIAN YEAST STRAINS AS WINE STARTER CULTURES ON PILOT SCALE FERMENTATIONS

Abstract

The interactions between geographical and biotic factors, along with the winemaking process, influence the composition and sensorial characteristics of wine¹. In addition to the primary end products of alcoholic fermentation, many secondary metabolites contribute to wine flavor and aroma and their production depends predominantly on the yeast strain carrying out the fermentation. Commercially available strains of S. cerevisiae help improve the reproducibility and predictability of wine quality. However, most commercial wine strains available on the market have been isolated from Europe, are genetically similar, and may not be the ideal strain to reflect the terroir of Canadian vineyards². Instead, indigenous S. cerevisiae strains may enhance the typical sensory properties and characteristic profile of the wine region³. The Okanagan Valley is the major wine-producing region in British Columbia, Canada. The Measday lab has isolated S. cerevisiae indigenous strains from Okanagan Valley vineyards that are genetically distinct from commercial strains⁴. After evaluating the oenological characteristics of six indigenous strains isolated from Okanagan Crush Pad (OCP) winery in laboratory-scale fermentations, two were selected for pilot-scale winery fermentations to assess their potential as wine starter cultures. Fermentations with OCP088 and OCP125 yeast strains were carried out in triplicate 250L stainless steel barrels at OCP winery. Vin Gris (VG, Pinot Noir) and Pinot Gris (PG) varietals were chosen, the grapes were pressed, and the juice was settled to remove skins before inoculation. Major metabolites (organic acids, sugars, and ethanol) were quantified using HPLC-RID, sugar in both wines was mainly fructose, ranging between 16 g/L and 20 g/L, ABV of the finished product ranged between 10.8 and 11.3 %. Volatile compounds (terpenes, esters, ketones, and higher alcohols) were identified using SPME-GC/MS We identified the following number of volatile compounds in each fermentation: OCP125 PG (56), OCP088 PG (52), OCP125 VG (45), OCP088 VG (44). The majority of volatile compounds were esters, which are known for their contribution to wine quality. OCP 125 tended to produce more terpenes than OCP 088. Some of these compounds are responsible for honey and grapefruit-like aromas, which are atypical of these varietals, adding to the complexity of the final product.

 

1. Welke, J. E., Zanus, M., Lazarotto, M., Schmitt, K. G., & Zini, C. A.. (2012) Volatile Characterization by Multivariate Optimization of Headspace-Solid Phase Microextraction and Sensorial Evaluation of Chardonnay Base Wines. Journal of the Brazilian Chemical Society, 23(J. Braz. Chem. Soc., 2012 23(4)). doi: 10.1590/S0103-50532012000400013
2. Borneman, Anthony & Forgan, Angus & Kolouchova, Radka & Fraser, James & Schmidt, Simon. (2016). Whole Genome Comparison Reveals High Levels of Inbreeding and Strain Redundancy Across the Spectrum of Commercial Wine Strains of Saccharomyces cerevisiae. G3 (Bethesda, Md.). 6. doi: 10.1534/g3.115.025692.
3. Nikolaou, E., Soufleros, E., Bouloumpasi, E., Tzanetakis N. (2006) Selection of indigenous Saccharomyces cerevisiae strains according to their oenological characteristics and vinification results. Food Microbiology 23, 205-211 doi:10.1016/j. fm.2005.03.004
4. Cheng, E., Martiniuk, J.T., Hamilton, J., McCarthy, M., Castellarin, S., and Measday, V. (2020). Characterization of Sub-Regional Variation in Saccharomyces Populations and Phenolic Composition in a Canadian Wine Region. Frontiers in Genetics 11, 1-19. doi: 10.3389/fgene.2020.00908.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Vivien Measday¹.

1. Wine Research Center, Faculty of Land and Food Systems, University of British Columbia, Canada

Contact the author*

Keywords

Indigenous strains, metabolites, volatile compounds, wine fermentation

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

PROGRESS OF STUDIES OF LEES ORIGINATING FROM THE FIRST ALCOHOLIC FERMENTATION OF CHAMPAGNE WINES

Champagne wines are produced via a two-step process: the first is an initial alcoholic fermentation of grape must that produces a still base wine, followed by a second fermentation in bottle – the prise de mousse – that produces the effervescence. This appellation produces non-vintage sparkling wines composed of still base wines assembled from different vintages, varieties, and regions. These base wines, or “reserve wines,” are typically conserved on their fine lies and used to compensate for quality variance between vintages (1). Continuously blending small amounts of these reserve wines into newer ones also facilitates preserving the producer’s “house style.”

WINE RACKING IN THE WINERY AND THE USE OF INERT GASES: CONTROL AND OPTIMIZATION OF THE PROCESS

Atmospheric oxygen (O₂) generates oxidation in wines that affect their physicochemical and sensory evolution. The O₂ uptake in the different winemaking processes is generally considered to be negative for the sensory characteristics of white and rosé wines. Wine racking is a critical point of O₂ uptake, as the large surface area of the wine exposed during this operation and the inability to maintain an effective inert gas blanket over it.
The aim was to study the uptake of O₂ during the racking of a model wine as a reference and to compare with purging the destination tank with different inert gases.

PREVALENCE OF OAK-RELATED AROMA COMPOUNDS IN PREMIUM WINES

Barrel fermentation and barrel-ageing of wine are commonly utilised practices in premium wine production. The wine aroma compounds related to barrel contact are varied and can enhance a range of wine aromas and flavours, such as ‘struck flint’, ‘caramel’, ‘red berry’, ‘toasty’ and ‘nutty’, as well as conventional oaky characters such as ‘vanilla’, ‘spice’, ‘smoky’ and ‘coconut’. A survey of commercially produced premium Shiraz, Cabernet Sauvignon, Pinot Noir and Chardonnay wines was conducted, assessing the prevalence of compounds that have been proposed as barrel-ageing markers¹ including oak lactones, volatile phenols, furanones, aldehydes, thiazoles2,3, phenylmethanethiol⁴ and 2-furylmethanethiol.⁵

PRODUCTION OF A FUNCTIONAL BEVERAGE FROM WINEMAKING BY-PRODUCTS: A NEW WAY OF VALORISATION

In the challenge of transforming waste into useful products that can be re-used in a circular economy perspective, winery by-products can be considered as a source of potentially bioactive molecules such as polyphenols. The wine industry generates each year 20 million tons of by-products. Kombucha fermentation is an ancestral process which allow to increase the biological properties of tea by the action of a microbial consortium formed by yeasts and bacteria called SCOBY. It belongs to the field of healthy food for which the interest of consumers is growing. The objective of this work was to propose a new functional beverage made from winemaking by-products fermented by a Kombucha SCOBY.

SENSORY PROFILES AND EUROPEAN CONSUMER PREFERENCE RELATED TOAROMA AND PHENOLIC COMPOSITION OF WINES MADE FROM FUNGUSRESISTANT GRAPE VARIETIES (PIWI)

Planting grape varieties with several resistance loci towards powdery and downy mildew reduces the use of fungicides significantly. These fungus resistant or PIWI varieties (acronym of German Pilzwiderstandsfähig) contribute significantly to the 50% pesticide reduction goal, set by the European Green Deal for 2030. However, wine growers hesitate to plant PIWIs as they lack experience in vinification and are uncertain, how consumer accept and buy wines from these yet mostly unknown varieties. Grapes from four white and three red PIWI varieties were vinified in three vintages to obtain four diffe-rent white and red wine styles, respectively plus one rosé.