terclim by ICS banner
IVES 9 IVES Conference Series 9 OENOLOGICAL STRATEGIES FOR THE REMOVAL OF PINKING IN WHITE WINE

OENOLOGICAL STRATEGIES FOR THE REMOVAL OF PINKING IN WHITE WINE

Abstract

The pinking of in white wine is the turning of color from yellow to salmon hue. White wines obtained from certain grape varieties (e.g. Chardonnay, Sauvignon blanc, Riesling, Trebbiano di Lugana) showed to be susceptible to pinking [1] that has been evaluated by an assay providing the addition of hydrogen peroxide. Even if its appearance does not seem to affect the sensory properties [2], strategies are necessary for its removal. Nowadays, the treatment with polyvinylpolipirroline (PVPP) was reported to significantly decrease the pink color [3]. To assess other additives and co-adjuvants suitable for pinking removal, this study aimed to identify the wine treatment(s) most effective for achieving this purpose.

A white wine showing the pinking fault was added with several additives and co-adjuvants, including active charcoals (bleaching and deodorizing), bentonites, gelatine, PVPP, PVI/PVP, chitosan, potassium caseinate, kaolin, zeolite, silica, calcium phytate, oenological tannins (oak and grape skin), glutathione, ascorbic acid (without/with sulfur dioxide) yeast derivatives for a total of 23 removal assays. The wines were stored up to 26 days and their susceptibility to pinking was carried out at 4 sampling points (day 1, 5, 15 and 26) through the hydrogen peroxide test. The wine was considered susceptible to pinking (SP) when an increase of 5 mAU was observed at 500 nm [4]. Moreover, the pink color index at 500 nm (wit-hout hydrogen peroxide) was determined.

No change in the pink color index was found with the exception of potassium caseinate. Some of the tested additives and co-adjuvants were not effective in limiting SP, including active charcoals, bentonite, gelatine, kaolin, zeolite, silica, grape skin tannin, glutathione and ascorbic acid. For some of them, an increased SP was evidenced (e.g. kaolin, zeolite, grape skin tannin). The treatment with PVI/PVP strongly decreased the pinking susceptibility already after 1 day. In this condition, the wine was not SP anymore at day 15. For this sampling time, three of the yeast derivatives tested, chitosan, PVPP, potassium caseinate and oak tannins limited the pinking susceptibility. The addition of PVPP, the mainly used co-adjuvant, did not result the most relevant one to solve such significant color change. Further study will investigate the selected additives and co-adjuvants in other pink wines as well as in combination in order to identify the most promising treatment for the pinking removal.

 

1. Andrea-Silva, J., Cosme, F., Ribeiro, L. F., Moreira, A. S. P., Malheiro, A. C., Coimbra, M. A., Domingues, M. R. M., & Nunes, F. M. (2014). Origin of the pinking phenomenon of white wines. Journal of Agriculture and Food Chemistry, 62, 5651–5659. https://doi.org/10.1021/jf500825h
2. Nel, A.P., du Toit, W.J., & van Jaarsveld, F.P. (2021). Sensory evaluation of pinked Sauvignon blanc wines. South African Journal of Enology and Viticulture, 42, 175-183. http://dx.doi.org/10.21548/42-2-4316
3. Simpson R., Miller G., Orr L. (1982). Oxidative pinking of white wines: recent observations. Food technology in Australia, 34, 
44- 47.
4. Simpson R.F. (1977). Oxidative pinking in white wines. Vitis, 16, 286-286.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Daniela Fracassetti1,*, Francesca Domenighini¹, Alessio Altomare¹, Maria Manara², Antonio Tirelli¹

1. Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
2. Research and Developments, Dal Cin S.p.a., Via I Maggio 67, 20863 Concorezzo, Italy 

Contact the author*

Keywords

Wine treatments, PVI/PVP, Chitosan, Yeast derivatives

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INFLUENCE OF WINEMAKING VARIABLES AND VINEYARD LOCATIONS ON CHEMICAL AND SENSORY PROFILES OF SOUTH TYROLEAN PINOT BLANC

Pinot Blanc, an important grape variety grown in some mountain areas of Northern Italy such as South Tyrol over the last decades, with its cultivation covering 10.3% of the total vineyards, has compatible climatic conditions (e.g. heat requirements) which are normally found in the geographical areas of the mountain viticulture [1,2,3,4]. Climatic changes are hastening the growth of this variety at higher elevations, particularly for the production of high quality wine.

UNCOVERING THE ROLE OF BERRY MATURITY STAGE AND GRAPE GENOTYPE ON WINE CHARACTERISTICS: INSIGHTS FROM CHEMICAL CHARACTERISTICS AND VOLATILE COMPOUNDS ANALYSIS

In a climate change context and aiming for sustainable, high-quality Bordeaux wine production, this project examines the impact of grape maturity levels in various cultivars chosen for their adaptability, genetic diversity, and potential to enhance wine quality. The study explores the effects on wine compo-sition and quality through sensory and molecular methods. We studied eight 14-year-old Vitis vinifera cv. grape varieties from the same area (VITADAPT plots 1 and 5): Cabernet Franc, Cabernet Sauvignon, Carmenère, Castets, Cot, Merlot, Petit Verdot, and Touriga Nacional.

PHENOLICS DYNAMICS OF BERRIES FROM VITIS VINIFERA CV SYRAH GRAFTED ON TWO CONTRASTING ROOTSTOCKS UNDER COMBINED SALINITY AND WATER STRESSORS AND ITS EFFECT ON WINE QUALITY

Wine regions are getting warmer as average temperatures continue raising affecting grape growth, berry composition and wine production. Berry quality was evaluated in plants of Vitis vinifera cv Syrah grafted on two rootstocks, Paulsen (PL1103) and SO4, and grown under two salinity concentrations (LS:0.7dS/m and HS:2.5dSm-1) in combination with two irrigation regimes (HW:133% and CW:100%), being the seasonal water application 483mm (control, 100%). Spectrophotometer measurements from berry skin during veraison and harvest stages and from “young” wine samples, were indicative of the stressors effect and the mediation of the rootstocks. At veraison (i) total phenolics content were high under LSHW (0.7dSm-1 and high water conditions) for SO4 and PL1103.

MONOSACCHARIDE COMPOSITION AND POLYSACCHARIDE FAMILIES OF LYOPHILISED EXTRACTS OBTAINED FROM POMACES OF DIFFERENT WHITE GRAPE VARIETIES

The recovery of bioactive compounds from grape and wine by-products is currently an important and necessary objective for sustainability. Grape pomace is one of the main by-products and is a rich source of some bioactive compounds such as polyphenols, polysaccharides, fatty acids, minerals and seed oil. Polysaccharides contained in the grape cell wall can be rhamnogalacturonans type II (RG-II), polysaccharides rich in arabinose and galactose (PRAG), mannoproteins (MP), homogalacturonans (HG) and non pectic polysaccharides (NPP).

AROMATIC AND FERMENTATIVE PERFORMANCES OF HANSENIASPORA VINEAE IN DIFFERENT SEQUENTIAL INOCULATION PROTOCOLS WITH SACCHAROMYCES CEREVISIAE FOR WHITE WINEMAKING

Hanseniaspora vineae (Hv) is a fermenting non-Saccharomyces yeast that compared to Saccharomyces cerevisiae (Sc) present some peculiar features on its metabolism that make it attractive for its use in wine production. Among them, it has been reported a faster yeast lysis and release of polysaccharides, as well as increased ß-glucosidase activity. Hv also produces distinctive aroma compounds, including elevated levels of fermentative compounds such as ß-phenylethyl acetate and norisoprenoids like safranal. However, it is known for its high nutritional requirements, resulting in prolonged and sluggish fermentations, even when complemented with Sc strain and nutrients.