terclim by ICS banner
IVES 9 IVES Conference Series 9 GRAPE SPIRITS FOR PORT WINE PRODUCTION: SCREENING THEIR AROMA PROFILE

GRAPE SPIRITS FOR PORT WINE PRODUCTION: SCREENING THEIR AROMA PROFILE

Abstract

Port is a fortified wine, produced from grapes grown in the demarcated Douro region. The fortification process consists in the addition of a grape spirit (77% v/v) to the fermenting juice for fermentation interruption, resulting in remaining residual sugars in the wine and increased alcohol content (19-22%). The approval of grape spirits follows the Appellation (D.O. Port wine) rules1 and it is currently carried out based on analytical control and on sensory evaluation done by the public Institute that upholds the control of the quality of Douro Appellation wines. However, the producers of Port wines would like to have more information about quality markers of grape spirits. Thus, this work intends to characterize the aroma profile of several samples (23) of grape spirits for Port wine production. That characterization was done by using aroma descriptive analysis with a sensory panel and by using olfactometry (GC-O) in order to screen, with a sniffers panel, the most potent odorant compounds across the several volatile compounds of the samples. It was also determined the sensory thresholds of some of the identified compounds in order to determine the odorant activity value of each compound.

The aroma profile results revealed different grape spirits aroma profiles. The PCA applied to the average results (from a sensory panel) of aroma attributes intensities allows the separation of the samples across the two principal components, which explain more than 50% of the variability. The overall quality appears to be linked to the positive side of component 1 more associated with the fruity, floral and sweet odor notes. The samples with low quality are placed in the opposite side of this component, and linked to higher intensity of odour notes such as tails, herbaceous and oily.

The chromatographic analysis (GC-O and GC-MS) of several grape spirit samples pointed out as potent odorants several compounds that belong to different chemical families, namely esters, alcohols, terpenic compounds, acids and ketones. Based on the sensory thresholds, determined by the sensory panel in hydroalcoholic solutions (20% v/v), the odorant activity values were calculated for the different odorant compounds. The obtained results showed, that the compounds, which presented the higher odorant activity values were esters and terpenic group compounds.

DOI:

Publication date: February 11, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Ilda Caldeira1,2, Sílvia Lourenço¹, Isabel Furtado³, Ricardo Silva³, Frank S. S. Rogerson³

1. Instituto Nacional de Investigação Agrária e Veterinária, Polo de Dois Portos, Quinta de Almoinha, 2565-191 Dois Portos, PORTUGAL
2. MED—Mediterranean Institute for Agriculture, Environment and Development Institute for Advanced Studies and Research, Universidade de Évora, Polo da Mitra, Ap. 94, 7006-554 Évora, PORTUGAL
3. Symington Family Estates, Vinhos S.A. Travessa Barão de Forrester, 86, 4400-034 Vila Nova de Gaia, PORTUGAL

Contact the author*

Keywords

Grape spirits, Port wine, odorant compounds, sensory analysis

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

UNRAVELLING THE ROLE OF LACTIC ACID BACTERIA ON SPARKLING WINE ELABORATION THROUGH METABOLOMICS APPROACH

Xinomavro is a red grape variety from Northern Greece (Protected Designation of Origin), known for the nice acidities, perfectly appropriate for sparkling wine production (Rosé and Blanc de Noir). The elabo- ration of sparkling wine requires technical as well as scientific skills. Although the impact of the yeast strains and their metabolites on the final product quality is well documented, the action of bacteria still remains unknown.
The present work focuses (i) on the population diversity of lactic acid bacteria isolated from sparkling wines and (ii) on the technological effect of the species during sparkling wine elaboration.

EXTRACTIBLE COMPOUNDS FROM MICROAGGLOMERATED CORK STOPPERS

After bottling, the wine continues to evolve during storage. The choice of the stopper is an important factor in this evolution. In addition to the oxygen permeability of the closure, the migration of stopper compounds into the wine can also have an impact on the wine organoleptic properties. Many studies have shown that transfers of volatile compounds from the stoppers into the wine can happen depending on the type of closure used (1). Moreover, when cork-made stoppers are used, the migration of phenolic compounds from the stopper into the wine can also occur (2, 3).

ANTIOXIDANT CAPACITY OF INACTIVATED NON-SACCHAROMYCES YEASTS

The importance of the non-Saccharomyces yeasts (NSY) in winemaking has been extensively reviewed in the past for their aromatic or bioprotective capacity while, recently their antioxidant/antiradical potential has emerged under winemaking conditions. In the literature the antioxidant potential of NSY was solely explored through their capacity to improve glutathione (GSH) content during alcoholic fermen- tation [1], while more and more studies pointed out the activity of the non-glutathione soluble fraction released by yeasts [2].

HOLISTIC APPROXIMATION OF THE INFLUENCE OF SACCHAROMYCES STRAINS ON WINE AROMA PRECURSORS

Wine varietal aroma is the result of a mixture of compounds formed or liberated from specific grape-aroma precursors. Their liberation/formation from their specific precursors can occur spontaneously by acid catalyzed rearrangements or hydrolysis or by the action of the yeast enzymatic activities. The influence of yeast during fermentation on the production of these volatile compounds has been widely studied however, the effect of this influence during aging is not fully understood. In order to evaluate these processes several indirect strategies have been used to study aroma precursors although they are not useful to understand the chemistry of the process.

CHEMICAL DRIVERS OF POSITIVE REDUCTION IN NEW ZEALAND CHARDONNAY WINES

According to winemakers, wine experts and sommeliers, aromas of wet stone, mineral, struck match and flint in white wines styles, such as those produced from Vitis vinifera L. cv. Chardonnay, are considered to be hallmarks of positive reduction.1,2 In recent years, the production of Chardonnay styles defined by aroma characteristics related to positive reduction has become more desirable among wine experts and consumers. The chemical basis of positive reduction is thought to originate from the concentration of specific volatile sulfur compounds (VSCs), including methanethiol (MeSH) imparting mineral and chalk notes,3 and benzenemethanethiol (BMT) responsible for struck match and flint.1,4