GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Hexose efflux from the peeled grape berry

Hexose efflux from the peeled grape berry

Abstract

Context and purpose of the study ‐ After the onset of grape berry ripening, phloem unloading follows an apoplasmic route into the mesocarp tissue. In the apoplast, most of the unloaded sucrose is cleaved by cell wall invertases, and imported into the cells as glucose and fructose. Alternatively, sucrose can be imported directly from the apoplast and cleaved into glucose and fructose, either in the cytoplasm or vacuoles. In low‐sucrose cultivars, such as Shiraz, glucose and fructose are the dominant sugars in vacuoles. Transport of sugars across the plasma membrane and tonoplast is a complex process, not fully understood. Some of the elements of the sugar transport mechanism may work in a reverse mode. The purpose of this study was to indirectly observe the nature of the transport mechanism by creating conditions inducing hexose efflux from a peeled berry.

Material and methods ‐ Potted plants of cv. Shirazwere grown in a glass‐house (25/16°C), from the end of anthesis onward. The experimental method was derived from the “berry‐cup” technique: a peeled berry, still attached to the plant, was immersed in a MES buffer (2‐(N‐morpholino)ethanesulfonic acid, pH 5,5)) solution that was collected every 30 minutes over a 3 hour period. The experiment was repeated weekly during the ripening phase. Additionally, during the period of intensive sugar accumulation (one to three weeks after veraison), three treatments were imposed: (i) a comparison of sugar unloading from berries detached or attached to the vine, (ii) the addition of the membrane‐ impermeant sulfhydryl‐specific cytotoxin p‐chloromercuribenzenesulfonic (PCMBS, 1mM) to the buffer solution, (iii) exposing the berry to cold (10°C), room temperature (27°C) or warm (40°C) buffer. Collected samples were analyzed for glucose and fructose concentration.

Results ‐ During five weeks of ripening, the rate of hexose (mg of glucose+fructose per g of berry fresh weight) efflux from the peeled berry into the buffer solution increased.There was no difference in efflux rate between attached or detached berries, however efllux rates were temperature dependent. The non‐penetrating enzyme inhibitor, PCMBS, depressed glucose and fructose efflux at the first sampling date, but not two weeks later. The inhibitory effect of PCMBS on fructose efflux was different from glucose, however for both hexoses the reversible nature of PCMBS was confirmed. During ripening, the glucose to fructose ratio within the collected buffer was significantly lower than in the grape juice, and had the opposite trend. These results lead us to the conclusion that the origin of the collected hexoses was vacuolar, and that the hexose efflux mechanism is differently sensitive to PCMBS at the two stages of ripening. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Predrag BOŽOVIĆ (1,3), Suzy ROGIERS (2,3), Alain DELOIRE (4)

(1) University of Novi Sad,Faculty of Agriculture, Serbia
(2) New South Wales Department of Primary Industries, Wagga Wagga, NSW, Australia
(3)National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, Australia
(4)University of Montpellier, SupAgro, Department of Biology-Ecology, France

Contact the author

Keywords

Grapevine, Sugar transport, Glucose, Fructose, Efflux, PCMBS

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

The use of pulsed fluorescence detector to quantify free SO2 in wines via the headspace

Pulsed fluorescence SO2 analyzers are widely used for atmospheric monitoring. They are accurate, portable, sensitive and their price are reduced compared to advanced techniques like gas chromatography with sulfur chemiluminescence detection (GC-SCD).

ALCOHOLIC FERMENTATION DRIVES THE SELECTION OF OENOCOCCUS OENI STRAINS IN WINE

Oenococcus oeni is the predominant lactic acid bacteria species in wine and cider, where it performs the malolactic fermentation (MLF) (Lonvaud-Funel, 1999). The O. oeni strains analyzed to date form four major genetic lineages named phylogroups A, B, C and D (Lorentzen et al., 2019). Most of the strains isolated from wine, cider, or kombucha belong to phylogroups A, B+C, and D, respectively, although B and C strains were also detected in wine (Campbell-Sills et al., 2015; Coton et al., 2017; Lorentzen et al., 2019;

Promoting sustainability in Mediterranean agriculture: insights from the Portuguese vine & wine sector

Agroecology is an integrated approach that simultaneously applies ecological and social concepts and principles to redesign and manage food and agricultural systems, promoting agroecosystems with the necessary biological, socio-economic, and institutional diversity and alignment to support greater efficiency. Thus, several studies have been carried out at promoting the adoption of more agroecological practices among farmers and a wider audience concerning soil conservation and health maintenance.

Improved analysis of isomeric polyphenol dimers using the 4th dimension of trapped ion mobility spectrometry – mass spectrometry

Dehydrodicatechins have recently received attention as oxidation markers especially in grapes and wine. Their analysis mainly uses LC-MS/MS which is able to differentiate them from their natural isomers (dimeric procyanidins), based on specific fragments

The impact of sustainable management regimes on amino acid profiles in grape juice, grape skin flavonoids, and hydroxycinnamic acids

One of the biggest challenges of agriculture today is maintaining food safety and food quality while providing ecosystem services such as biodiversity conservation, pest and disease control, ensuring water quality and supply, and climate regulation. Organic farming was shown to promote biodiversity and carbon sequestration, and is therefore seen as one possibility of environmentally friendly production. Consumers expect organically grown crops to be free from chemical pesticides and mineral fertilizers and often presume that the quality of organically grown crops is different or higher compared to conventionally grown crops. Integrated, organic, and biodynamic viticulture were compared in a replicated field trial in Geisenheim, Germany (Vitis vinifera L. cv. Riesling). Amino acid profiles in juice, grape skin flavonoids, and hydroxycinnamic acids were monitored over three consecutive seasons beginning 7 years after conversion to organic and biodynamic viticulture, respectively. In addition, parameters such as soil nutrient status, yield, vigor, canopy temperature, and water stress were monitored to draw conclusions on reasons for the observed changes. Results revealed that the different sustainable management regimes highly differed in their amino acid profiles in juice and also in their skin flavonol content, whereas differences in the flavanol and hydroxycinnamic acid content were less pronounced. It is very likely that differences in nutrient status and yield determined amino acid profiles in juice, although all three systems showed similar amounts of mineralized nitrogen in the soil. Canopy structure and temperature in the bunch zone did not differ among treatments and therefore cannot account for the observed differences in favonols. A different light exposure of the bunches in the respective systems due to differences in vigor together with differences in berry size and a different water status of the vines might rather be responsible for the increase in flavonol content under organic and biodynamic viticulture.