GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Hexose efflux from the peeled grape berry

Hexose efflux from the peeled grape berry

Abstract

Context and purpose of the study ‐ After the onset of grape berry ripening, phloem unloading follows an apoplasmic route into the mesocarp tissue. In the apoplast, most of the unloaded sucrose is cleaved by cell wall invertases, and imported into the cells as glucose and fructose. Alternatively, sucrose can be imported directly from the apoplast and cleaved into glucose and fructose, either in the cytoplasm or vacuoles. In low‐sucrose cultivars, such as Shiraz, glucose and fructose are the dominant sugars in vacuoles. Transport of sugars across the plasma membrane and tonoplast is a complex process, not fully understood. Some of the elements of the sugar transport mechanism may work in a reverse mode. The purpose of this study was to indirectly observe the nature of the transport mechanism by creating conditions inducing hexose efflux from a peeled berry.

Material and methods ‐ Potted plants of cv. Shirazwere grown in a glass‐house (25/16°C), from the end of anthesis onward. The experimental method was derived from the “berry‐cup” technique: a peeled berry, still attached to the plant, was immersed in a MES buffer (2‐(N‐morpholino)ethanesulfonic acid, pH 5,5)) solution that was collected every 30 minutes over a 3 hour period. The experiment was repeated weekly during the ripening phase. Additionally, during the period of intensive sugar accumulation (one to three weeks after veraison), three treatments were imposed: (i) a comparison of sugar unloading from berries detached or attached to the vine, (ii) the addition of the membrane‐ impermeant sulfhydryl‐specific cytotoxin p‐chloromercuribenzenesulfonic (PCMBS, 1mM) to the buffer solution, (iii) exposing the berry to cold (10°C), room temperature (27°C) or warm (40°C) buffer. Collected samples were analyzed for glucose and fructose concentration.

Results ‐ During five weeks of ripening, the rate of hexose (mg of glucose+fructose per g of berry fresh weight) efflux from the peeled berry into the buffer solution increased.There was no difference in efflux rate between attached or detached berries, however efllux rates were temperature dependent. The non‐penetrating enzyme inhibitor, PCMBS, depressed glucose and fructose efflux at the first sampling date, but not two weeks later. The inhibitory effect of PCMBS on fructose efflux was different from glucose, however for both hexoses the reversible nature of PCMBS was confirmed. During ripening, the glucose to fructose ratio within the collected buffer was significantly lower than in the grape juice, and had the opposite trend. These results lead us to the conclusion that the origin of the collected hexoses was vacuolar, and that the hexose efflux mechanism is differently sensitive to PCMBS at the two stages of ripening. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Predrag BOŽOVIĆ (1,3), Suzy ROGIERS (2,3), Alain DELOIRE (4)

(1) University of Novi Sad,Faculty of Agriculture, Serbia
(2) New South Wales Department of Primary Industries, Wagga Wagga, NSW, Australia
(3)National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, Australia
(4)University of Montpellier, SupAgro, Department of Biology-Ecology, France

Contact the author

Keywords

Grapevine, Sugar transport, Glucose, Fructose, Efflux, PCMBS

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Foliar application of urea improved the nitrogen composition of Chenin grapes

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison. In all solutions were added 1ml/l of Tween 80 ® surfactant.

Metabolomic profiling of botrytized grape berries: unravelling the dynamic chemical transformations during noble rot

Botrytis cinerea, a fungal pathogen commonly known as grey mold, which under specific climatic conditions can develop into a desirable form known as noble rot. In this process the fungus penetrates the grape skin, allowing water evaporation and concentration of sugars and flavors, while profoundly affects the metabolite composition of grapes, leading to the production of unique and desirable compounds in the resulting wines. The result is a unique and complex wine with a luscious sweetness, heightened aromatics, and a distinct character.

Impact of cover crop in vineyard on the musts volatile profile of Vitis vinifera L. Cv Syrah

rape aromatic characteristics are very important for the production of quality wines. The concentrations of volatile compounds in grape berries from vines with cover crops have been scarcely studied.

WAC 2022: Abstracts are available on IVES Conference Series

In order to disseminate the scientific results presented during the WAC 2022 , the organizers have decided to share the abstracts of the oral communications and posters with Open Access on IVES Conference Series. The fifth edition of the International Conference...

Impact of nitrogen addition timing on the synthesis of fermentative aromas in alcoholic fermentation

Among the different compounds present in the must, nitrogen is an essential nutrient for the management of the fermentation kinetics but it also plays an important role in the synthesis of fermentative aromas.