GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Conversion to mechanical management in vineyards maintains fruit

Conversion to mechanical management in vineyards maintains fruit

Abstract

Context and purpose of the study – Current environmental, ecological and economic issues require a better vineyard production management. In fact, a poor use of fertilizing could lead to harmful impact on environment. Another issue concerns the cultures themselves which couldn’t use fertilizers efficiently, leading to a loss of income or too much expense for farmers. Presently, estimation of fertilization’s needs is realized by the laboratory analysis of leaves selected through a random sampling. The present study aims at optimizing fertilization’s management by using a map of biophysical parameters estimated from satellite images.

Material and methods – Since 2016, experiments are carried out in three vineyard regions of France on three grapevine varieties (Merlot, Cabernet Franc and Merlot). The objective is to test if biophysical parameters or vegetation indices could be used to manage fertilization. Around ten plots in each region were studied. Leaves were sampled around the veraison period. Laboratory analysis were made to determine various parameters such as nitrogen, phosphorus and potassium content of leaves. Spot and Sentinel 2 satellite images were taken during the same period with a spatial resolution from 1.5m/pixel to 20m/pixel. A radiative transfer model was used to calculate biophysical parameters, including leaf area index (LAI), green cover fraction (Fcover), and chlorophyll content estimated in leaf (CHL). First, principal component analysis (PCA) were made to better understand the data distribution. Then, links between leaves components and biophysical parameters or vegetation indices were determined using simple and multiple linear regression.

Results – Differences were observed between each region. This could be due to different varieties, soil, climate and grapevine management (row spacing, pruning…). Models were also founded to predict nitrogen content of leaves using the biophysical parameter CHL (2016: R²=0,64, 2017: R²=0,59). These promising results still need to be confirmed with 2018 data. To improve accuracy further work will be carried out with other innovative methods such as machine learning.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Eve LAROCHE PINEL1,2,3*, Sylvie DUTHOIT1, Anne COSTARD1, Jacques ROUSSEAU4, Véronique CHERET2,3, Harold CLENET2,3

1 TerraNIS, 12 Avenue de l’Europe, F-31520 Ramonville Saint-Agne, France
2 Ecole d’Ingénieurs de PURPAN, 75 voie du TOEC, F-31076 Toulouse, France
3 UMR 1201 DYNAFOR, INRA / Toulouse INP, 24 chemin de Borderouge 31326 Castanet Tolosan Cedex 4Institut Coopératif du vin, La Jasse de Maurin, F-34970 Montpellier, France

Contact the author

Keywords

satellite remote sensing, fertilization, intra and inter-plot variability, biophysical parameters

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Impact of fining agents on Swiss Pinot noir red wines

In the context of climate change, excessive bitterness and astringency in wines have become increasingly prevalent. While variety selection and viticultural practices offer long-term solutions, they require considerable time before yielding practical results. In contrast, fining remains an accessible and immediate tool for winemakers.

Anthocyanins Chemistry During Red Wine Ageing

Anthocyanins are the main pigments present in young red wines, being responsible for their intense red color. These pigment in aqueous solutions occur in different forms in equilibrium that are dependent on the pH

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Achieving Tropical Fruit Aromas in White Wine through Innovative Winemaking Processes

Tropical fruit aroma is highly desirable in certain white wine styles and there is a significant group of consumers that show preference for this aroma.

Impact of urbanization on optimum wine Terroirs in the Bordeaux region sample of one township of the Entre-Deux-Mers Area

L’étude présentée porte sur une commune de l’Entre-Deux-Mers dans le bordelais. Nous caractérisons dans un premier temps les potentialités des sols vis-à-vis de la production de vins rouges de qualité (délimitation de terroirs grâce à la prise en compte des couvertures pédologiques et des caractéristiques morphométriques du terrain : pentes, expositions, convexités. Dans un second temps, nous récapitulons l’évolution historique des occupations des sols depuis 1790 : l’emplacement des vignes est ainsi localisé sur les terroirs respectifs des communes. Enfin, une étude prospective résultant d’enquêtes sur l’utilisation du foncier, situe le devenir prévisible de l’espace étudié (en particulier dans ses composantes viticoles et urbaines).