GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 From plant water status to wine flavonoid composition: a precision viticulture approach in a Sonoma county vineyard

From plant water status to wine flavonoid composition: a precision viticulture approach in a Sonoma county vineyard

Abstract

Context and Purpose of the Study- Plant water status of grapevine plays a critical role in affecting berry and final wine chemical composition. The environmental variabilities existing in vineyard system have significant impacts on plant water status, but it is challenging to individualize environmental factors from the temporal and spatial variabilities in vineyard. Therefore, there is need to monitor the ecophysical variation through utilizing precision viticulture tools in order to minimize the separation in berry composition. This study aims at delineating vineyard into different management zones based on plant water status explained by soil texture, and utilize differential harvest to equilibrate the final berry and wine composition.

Material and Method – Ecophysical variation affecting wine flavonoid composition in a Cabernet Sauvignon/110R vineyard was modeled for 2016 and 2017. Soil properties of the vineyard were proximally sensed to acquire soil texture. An equi-distant 30 m × 30 m grid was overlaid to characterize grapevine primary and secondary metabolism. The mid-day stem water potential (􀀁stem) integrals were calculated and delineated by k-means clustering into two water status zones in 2016: severely stressed (Zone 1) and moderately stressed (Zone 2). Primary metabolism, including total soluble solids, titratable acidity, pH, and berry weights; also, secondary metabolism, including anthocyanins and flavonols were measured throughout the whole season. The primary metabolism decoupled when Zone 2 reached 26 and 24 °Brix in 2016 and 2017, respectively with significantly higher °Brix values of 30 and 27 in Zone 1. Based on this decoupling in °Brix between two water stress zones, fruits were harvested differentially and vinified separately from two zones in both years.

Results – The research site received 39 mm of precipitation in 2016 and 162 mm in 2017. The surface soil texture could explain 84.20% of the variations in 􀀁stem while subsurface soil texture could explain 79.57%, depending on the loam to sandy loam contribution. In 2016, total anthocyanidins were higher in Zone 2. Di- and tri-hydroxylated anthocyanidins were more than 2× concentrated in Zone 2. Myricetin-, quercetin-, kaempferol-3-O-glucosides and total flavonols were higher in Zone 2. Proanthocyanidin subunits were also higher in Zone 2 in 2016. However, there was no difference in any flavonoid compound in 2017 except kaempferol-3-O-glucoside which was lower in Zone 2. The results indicated that in 2016, the water stress between the two zones was great enough to alter flavonoid concentration in base wine. However, in 2017, harvestcommenced earlier when two zones started separating in °Brix, and wine flavonoid concentration coalesced accordingly. This study provides fundamental knowledge to coalesce vineyard variability through linking soil texture to plant water status by using precision viticulture tools, further, their influences on flavonoid profiles in the final wine products.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Runze YU1, Luca BRILLANTE2, Johann MARTÍNEZ-LÜSCHER1, Luis SANCHEZ3, S. Kaan KURTURAL1*

1 Department of Viticulture and Enology, Oakville Experiment Station, University of California, Oakville, CA, USA
2 Department of Viticulture and Enology, California State University, Fresno, CA, USA
3 E & J Gallo Winery, 700 Yosemite Blvd, Modesto, CA, USA

Contact the author

Keywords

Grapevine, anthocyanins, flavonoids, water status, soil texture, spatial variability, viticulture

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

The use of microwaves during the maceration of Cabernet Sauvignon wines for improving their chromatic characteristics

The use of new technologies such as microwaves (MW) arose in recent years as an efficient alternative to reduce the use of sulfur dioxide (SO2) and as a method for improving wines in terms of color and aroma [1, 2]. MW (non-ionizing electromagnetic waves with frequencies between 300 MHz and 300 GHz) have been widely applied in the food industry in order to reduce processing time and favor food preservation.

Production and technological characteristics of some French clones of the Chardonnay variety in Yugoslavia

L’observation est effectuée entre 1996 et 1998. L’expérience a commencé avec des clones numérotés: 75, 95, 96 et 227 de la variété Chardonnay. Le porte greffe est le Kober 5 BB. La forme de conduite est le cordon. La taille est longue. La densité de plantation est 3,5 x 1 mètre (2857 ceps par 1/ha).

Analysis of temporal variability of cv. Tempranillo phenology within Ribera del Duero Do (Spain) and relationships with climatic characteristics

The Ribera del Duero Designation of Origin (DO) has acquired great recognition during the last decades, being considered one of the highest quality wine producing regions in the world. This DO has grown from 6,460 ha of vineyards officially registered in 1985 to approximately 21,500 ha in 2013. The total grape production stands at around 90 million kg, with an average yield that approaches nearly 4,500 kg/ha. Most vineyards are cultivated under rainfed conditions.

Polyphenol content of cork granulates at different steps of the manufacturing process of microagglomerated stoppers treated with supercritical CO2 used for wine bottling

The wine closure industry is mainly divided into three categories: screw caps, synthetic closures, and cork-based closures. Among this latter, microagglomerated cork stoppers treated with supercritical CO2 are now widely used, especially to avoid cork taint contaminations[1]. They are designed with cork granules obtained from cork offcuts of the punching process during the natural cork stoppers production. A previous study[2] showed that these stoppers released fewer polyphenols in 12 % (v/v) hydroalcoholic solution than natural cork stoppers.

Effect of the addition of peptidic hydrolysates from grape pomace by-products to red wines in warm regions

High temperatures typical of warm climates cause the colour of red wines to become increasingly unstable over time.