GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Physiological response of new cultivars resistant to fungi confronted to drought in a semi-arid Mediterranean area

Physiological response of new cultivars resistant to fungi confronted to drought in a semi-arid Mediterranean area

Abstract

Context and purpose of the study – Water is one of the most limiting factors for viticulture in Mediterranean regions. Former researches showed that water shortage hampers both vegetative and reproductive developments. INRA is running programs to breed varieties carrying QTL of tolerance to major fungi, i.e. powdery and downy mildews. Some varieties have been already certified or are close to be certified. However, little is known about the response of these varieties to water deficit, which behavior is critical for their development. This study characterized physiological responses of 4 new varieties to water deficit and described relationship between them.
Material and methods – This experiment was carried out in 2018 the south of France at the INRA’s Experimental Unit of Pech Rouge (Gruissan). Five cultivars were studied: INRA 1, 2, 3 and 4 in comparison to Syrah, all genotypes being grafted on 140Ru. Each cultivar was represented by 60 vines, with 30 vines being irrigated (I) and 30 vines without irrigation (NI). Each treatment x genotype was done in triplicated (3 x 10 vines). Irrigation was applied weekly from 3rd July until 11th September. Predawn leaf water potential (ѰPd) was measured weekly from mid-July to mid-September. When ѰPd between I and NI treatments were evidenced, physiological measurements –photosynthesis (A), stomata conductance (gs) and transpiration (E)- were weekly performed and water use efficiency (WUE= A/E) was calculated.
Results – In all varieties, we observed variations of ѰPd between I and NI, with Syrah and INRA 2 showing the maximum and minimum difference respectively. A, gs and E decreased for all genotypes in relation with ѰPd. Syrah showed the lowest ѰPd (-0.66 MPa averagely), A, gs and E. WUE in all of the varieties, exception INRA 3, was increased as water potential decreased, but in INRA 3 WUE slightly decreased in less values of ѰPd. The physiological parameters were classified to three level of predawn water potential: [0.2-0.4] MPa (moderate stress), [0.4-0.6] MPa (strong stress) and [0.6-0.8] MPa (severe stress) respectively. Under moderate stress, INRA 1 showed the higher A with 9.7 µmol m-2 S-1, but gs and E were maximum for INRA 4. Under a severe water deficit, A and WUE of INRA 1 were 6.44 µmol m-2 S-1 and 2.85 respectively, which is higher than other varieties, indicating INRA 1 as the most drought tolerant variety. These first results should not be considered conclusive.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Sajad GHASEDI YOLGHONOLOU 1,2*, Maria Julia CATELÉN4, Leandro ARRILLAGA LOPEZ5, Emmanuelle GARCIA1, Yannick SIRE1, Laurent TORREGROSA1,3, Hernán OJEDA1

1 INRA, Experimental Unit of Pech Rouge, Gruissan, France
2 Faculty of Agriculture, Malayer University, Malayer, Iran
3 AGAP, Montpellier University, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
4 U.N. Cuyo, Master of Viticulture and Oenology, Mendoza, Argentine
5 Faculty of Agriculture, University of Republique, Montevideo, Uruguay

Contact the author

Keywords

Water deficit, new varieties, photosynthesis, water use efficiency, climate changes

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Soils and plant material in prestigious Bordeaux vineyards impacts on yield and quality

High resolution soil maps (scale : 1/3000) were created for seven of the most prestigious red wine producing estates in Bordeaux, covering in total approximately 400 ha.

Estudio comparativo del potencial enológico de dos varietales tintos cultivados en la isla de Tenerife

En el presente trabajo se ha realizado un estudio comparativo entre los varietales tintos Listán negro y Negramolle en la Denominación de Origen Tacoronte-Acentejo. Se han determinado durante dos años

Effect of partial net shading on the temperature and radiation in the grapevine canopy, consequences on the grape quality of cv. Gros Manseng in PDO Pacherenc-du-vic-Bilh

As elsewhere, southwestern France vineyards face more recurrent summer heat waves these last years. Among the possibilities of adaptation to this climate changing parameter, the use of net shading is a technique that allow for limiting canopy exposure to radiations. In this trial, we tested net shading installed on one face of the canopy, on a north-south row-oriented plot of cv. Gros Manseng trained on VSP system in the PDO Pacherenc-du-Vic-Bilh. The purpose was to characterize the effects on the ambient canopy temperatures and radiations during the season and to observe the consequences on the composition of grapes and wines. Two sorts of net were used with two levels of obstruction (50% and 75%) of the photosynthesis active radiation (PAR). They have been installed on the west side of the canopy and compared to a netless control. Temperature and PAR sensors registered hourly data during the season. On specific summer day (hot and sunny) manual measurements took also place on bunches (temperature) and in different spots of the canopy (PAR). The results showed that, on clear days, the radiation is lowered by the shade nets respecting the supplier criteria. The effects on the ambient canopy temperature were inconstant on this plot when we observed the data from the global period of shading between fruit set and harvest. However, during hot days (>30°C), the temperature in the canopy was reduced during afternoon and the temperature of the bunch surface was reduced as well comparing to the control. A decrease of the maturity parameters of the berries, sugar and acidity, was also observed. Concerning the wine aromatic potential, no differences clearly appeared.

Différenciation de parcelles de Chenin du Val de Loire, a l’aide de l’etude des flores fongiques des raisins, en utilisant l’outil DGGE

Depuis le millésime 2002, une étude est menée sur la diversité de la flore fongique de parcelles du cépage chenin, situées essentiellement sur les appellations de Vouvray et Montlouis ; deux appellations séparées par le fleuve nommé la Loire. Les parcelles se situent dans des conditions pédoclimatiques différentes, qui se retrouvent au travers des suivis de maturité et l’état sanitaire.

Impact of varying ethanol and carbonation levels on the odor threshold of 1,1,6-trimethyl-1,2-dihydronaphtalene (petrol off-flavor) and role of berry size and Riesling clones

1,1,6-trimethyl-1,2-dihydronaphtelene (TDN) evokes the odor of “petrol” in wine, especially in the variety Riesling. Increasing UV-radiation due to climate change intensifies formation of carotenoids in the berry skins and an increase of TDN-precursors1. Exploring new viticultural and oenological strategies to limit TDN formation in the future requires precise knowledge of TDN thresholds in different matrices. Thresholds reported in the literature vary substantially between 2 µg/L up to 20 µg/L2,3,4 due to the use of different methods. As Riesling grapes are used for very different wine styles such as dry, sweet or sparkling wines, it is essential to study the impact of varying ethanol and carbonation levels.