GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 The effect of management practices and landscape context on vineyard biodiversity

The effect of management practices and landscape context on vineyard biodiversity

Abstract

Context and purpose of the study – Intensification is considered one of the major drivers of biodiversity loss in farmland. The more intensive management practices that have been adopted the last decades, contributed to species declines from all taxonomic groups. Moreover, agricultural intensification has led to an important change of land use. Complex, mixed agro-ecosystems with cultivated and non-cultivated habitats have been converted to simplified, intensive and homogeneous ones with severe effects on biodiversity. The present study aimed at reviewing the most recent literature of the effects of agricultural practices and surrounding landscape on biodiversity in Mediterranean vineyards.

Material and methods – Several scientific papers and research projects, studying the effects of managements practices and landscape on vineyard biodiversity and the methods already used to assess and moderate species decline, were reviewed.

Results – Tillage, irrigation, pesticide and fertilizer use as well as the destruction of the natural vegetation in hedgerows and field margins are some of the agricultural practices that are responsible for most declines in species richness. In addition to management practices, a higher or lower landscape heterogeneity provides a higher or lower probability for the species to find food resources, shelter or sites for reproduction, over-wintering or oviposition. A plethora of metrics have been developed to quantify landscape and measure the landscape heterogeneity. The development of a biodiversity metric tool that quantifies and evaluates the effect of vineyard management practices is crucial to help farmers to choose the most sustainable option that will benefit both biodiversity and production.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Athanasia MANDOULAKI¹, Ioannis VOGIATZAKIS2, Menelaos STAVRINIDES1*

Cyprus University of Technology, 3036 Limassol, Cyprus
2 Open University of Cyprus, 2252 Nicosia, Cyprus

Contact the author

Keywords

vineyard, intensification, biodiversity, management practices, landscape, biodiversity metric

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Can fungoid chitosan help to produce sulfite-free wines? Ten years of investigation on its antioxidant properties

Chitosan is a natural polymeric saccharide admitted by EU since 2011 for must and wine clarification, the reduction of some contaminants (e.g. ochratoxin A) and to prevent the development of wine microbialspoilage due to lactic acid bacteria or Dekkera/Brettanomyces yeasts.

A NEW TOOL TO QUANTIFY COMPOUNDS POTENTIALLY INVOLVED IN THE FRUITY AROMA OF RED WINES. DEVELOPMENT AND APPLICATION TO THE STU-DY OF THE FRUITY CHARACTER OF RED WINES MADE FROM VARIOUS GRAPE VARIETIES

A wide range of olfactory descriptors ranging from fresh and jammy fruit notes to cooked and oxidized fruit notes could describe the fruity aroma of red wines [1]. The fruity character of a wine is mainly related to the grape variety selected, to the terroir and the vinification process applied for its conception. In white wines, some volatile compounds confer directly their aroma to the wine while the question of “key” compound is more complex in red wines. According to many studies performed over the past decades, some fruity ethyl esters are directly involved in the fruity perception of red wines while others, present at subthreshold concentrations, participate indirectly to the fruity expression via perceptive interactions [2].

Innovative approach to energy efficiency benchmarking in the wine sector

The wine industry, a key sector for the European Union’s economy, exhibits significant energy consumption, amounting to approximately 1,750 million kWh annually within this geographic context, with major contributions from Italy, France, Spain, and Portugal (Fuentes Pila et al., 2015).

High and extreme high temperature effects on shiraz berry composition 

Climate change is leading to a rise in average temperature and in the frequency and severity of heatwaves, and is already significantly disturbing grapevine phenology and berry composition. With the evolution of the weather of Australian grape growing regions that are already warm and hot, flavonoids, for which biosynthesis depends on bunch microclimate, are expected to be impacted. These compounds include anthocyanins and tannins which contribute substantially to grape and wine quality. The goals of this project were to determine if berry tannin accumulation is sensitive to high temperature and to enhance knowledge on upper temperature limits for viable wine production, in turn informing critical timing for mitigation strategies.

Factors influencing cover crop water competition in vineyards and implications for future drought adaptation

Vineyard water management in Australia is often associated with irrigation in warm and hot climates, but in cooler regions the larger share of the seasonal water demand is met by rainfall.