GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Nitrogen partitioning among vine organs as a consequence of cluster thinning

Nitrogen partitioning among vine organs as a consequence of cluster thinning

Abstract

Context and purpose of the study ‐ Agroscope is investigating the impact of yield on nitrogen (N) partitioning in grapevine and on must composition. The mechanism of N assimilation, partitioning and 15 mobilization from the reserves is studied through foliar application of N isotope‐labelled urea over a two‐year period. The final scope is to optimize fertilizer use efficiency and grape composition. Here are summarized the results from the first year of experimentation.

Material and methods ‐ Two blocs (control and test) of 12 homogeneous potted grapevines each (Vitis vinifera L. Chasselas) were grown under field conditions. During summer 2017, cluster thinning allowed to create a large yield gradient (from 0.5 to 2.5 kg/m2 of soil). Vegetative development—canopy weight, leaf area, photosynthesis activity—and yield parameters —bud fruitfulness, bunch and berry weights, number of bunches and total yield per vine— were measured. All the vines were excavated at harvestand the organs were separated (roots, trunk, canopy, pomace and must), with the aim of monitoring N partitioning in the plant. The test bloc received 20 kg/ha of foliar‐applied 15N labelled urea at veraison. Total organic carbon and nitrogen and their stable isotope compositions were determined in each organ, using EA‐IRMS. The musts were analysed for their content of soluble sugars, acids, NH4+ and amino acids.

Results ‐ Grapevine compensated higher N demand from the grapes by assimilating more N through leaves and roots and mobilizing more N from reserves. The foliar supply of urea limited N mobilization from the roots, preserving the reserves for the following year. Must amino‐acid profiles varied significantly with the yield. Yield had no impact neither on vegetative development nor on grape maturation. With increasing yield, N concentration remained constant in the canopy and grapes at harvest, to the detriment of the N content in roots. Urea assimilation was positively correlated with the yield (r = 0.68, P = 0.029). Urea supply had a positive impact on yeast assimilable nitrogen concentration in the must only under higher yield conditions. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Thibaut VERDENAL (1,2), Jorge E. SPANGENBERG (2), Vivian ZUFFEREY (1), Agnes DIENES‐NAGY (1), Olivier VIRET (3), Cornelis VAN LEEUWEN (4), Jean‐Laurent SPRING (1)

(1) Agroscope, Av. Rochettaz 21, CH-1009 Pully, Switzerland
(2) Institute of Earth Surface Dynamics, University of Lausanne, CH-1015 Lausanne, Switzerland
(3) Direction générale de l’agriculture, de la viticulture et des affaires vétérinaires (DGAV), Av. de Marcelin 29, CH-1110 Morges, Switzerland
(4) EGFV,Bordeaux Sciences Agro, INRA, Univ. Bordeaux, ISVV, F-33882 Villenave d’Ornon, France

Contact the author

Keywords

 Nitrogen, partitioning, yield, foliar urea, isotope labelling, amino acids

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Water availability at budbreak time in vineyards that are deficitary irrigated during the summer: Effect on must volatile composition


In recent years, Mediterranean regions are being affected by marked climate changes, primarily characterized by reduced precipitation, greater concurrence of temperature extremes and drought during the growing season, and increased inter-annual variability in temperatures and rainfall. Generally, high-quality red wines need moderate water deficit. Hence, irrigation may be needed to avoid severe vine water stress occurring in some vintages and soils with low holding capacity. The aim of this work was to evaluate the effects of soil recharge irrigation in pre-sprouting and summer irrigation every week (30 % ETO) from the pea size state until the end of ripening (RP) compared to exclusively summer irrigation every week (R) in the same way that RP, on must volatile composition at harvest.

The sensory features of the landscapes

When someone watches a hilly landscape, the image beauty creates emotions and frames of mind not easily forgettable, but sometimes man’s intervention by means of soil movement and reduction of the natural biodiversity can significantly modify the landscape and consequently the above-mentioned emotions. One speculates if sensory appreciation of a wine may be strongly affected by psychological factor: landscape beauty.

MODELLING THE AGEING POTENTIAL OF SYRAH RED WINES BY ACCELERATED AGEING TESTS: INFLUENCE OF ANTIOXIDANT ASSAYS AND PHENOLIC COMPOSITION

Red wine ageing is an important step in the red wine evolution and impacts its chemical and sensory characteristics through many chemicals and physico-chemical reactions. The kinetics of these evolutions depend on the wine studied and influence the wine ageing potential. Generally, high quality red wines require a longer period of bottle ageing before consumption¹. The ageing potential is an impor-tant parameter for wine quality and is related to the capacity of a wine to undergo oxidation over time². Phenolic compounds which are ones of the main substrates for oxidation can then potentially modulate ageing potential³.

Unravelling the microbial community structure and aroma profile of Agiorgitiko wine under different inoculation schemes

Agiorgitiko (Vitis vinifera L. cv.) is the most widely cultivated indigenous red grape variety in Greece, known for the production of Protected Designation of Origin Nemea wines.

Identification of novel aromatic precursors in winemaking grapes using an optimized fractionation and UHPLC-MS analysis

Winemaking grapes contain a diverse array of non-volatile precursors that become noticeable only after hydrolysis reactions or molecular rearrangements, during which aroma compounds are generated and released [1]. Among these, glycosidic precursors are the most abundant and play a key role in the development of wine aroma [2].