Macrowine 2021
IVES 9 IVES Conference Series 9 Bentonite fining in cold wines: prediction tests, reduced efficiency and possibilities to avoid additional fining treatments

Bentonite fining in cold wines: prediction tests, reduced efficiency and possibilities to avoid additional fining treatments

Abstract

Bentonite fining is widely used to prevent protein haze in white wines. Most wineries use laboratory-scale fining trials to define the appropriate amount of bentonite to be used in the cellar. Those pre-tests need to mimic as much as possible the industrial scale fining procedure to determine the exact amount of bentonite necessary for protein stability. Nevertheless it is frequent that, after fining with the recommended amount of bentonite, wines appear still unstable and need an additional fining treatment. It remains a major challenge to understand why the same wine, fined with the same dosage of the same bentonite, achieves stability in the lab, but not in the cellar. Presently unclear is the role, wine temperature plays in this issue. The impact of wine temperature, pH and mixing, on the fining efficiency of different bentonites has been studied in a Gewürztraminer wine. Three different types of bentonites were used in this trial; a sodium-bentonite, a sodium-calcium-bentonite and a sodium-calcium-bentonite which additionally contains tannins. This paper shows the effects of low wine temperatures on the efficiency of three different commercial bentonites. Further, the effect of an additional whirling up of the settled bentonite is studied to understand if this could be a measure to increase the effectiveness of the fining treatment. Wine temperature has an impact on the performance of the bentonite fining. Low temperatures make it more difficult to achieve protein stability for all the different bentonites in investigation. Not one single wine achieved protein stability when it was fined at 4°C with any of the three bentonites in investigation. At low wine temperature always an additional fining treatment or anew shaking of the wines was necessary to achieve protein stability. Especially the sodium-bentonite Bentogran showed an important loss in efficiency when wines were cold. NaCalit and Super Black Jell were less affected from low wine temperatures and achieved tolerable turbidity levels when bentonite was stirred up again after one week of contact. Mixing up the settled bentonite once again when settled is an efficient way to improve the effectiveness of the bentonite fining. This simple and easy to carry out measure can be an interesting strategy for the praxis to avoid additional fining treatments. Further, to reduce the discrepancy among the laboratory and cellar conditions, two possibilities exist: (a) fining trials could be conducted at the same temperature as the wine in the cellar has, (b) bentonite fining in the cellar should not occur at too low wine temperatures. These are relevant findings for winemakers who do their bentonite fining in cold wines and deal with varieties with a high wine pH.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Konrad Pixner*, Andreas Putti, Norbert Kofler

*Laimburg

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Pesticide removal in wine with a physical treatment by molecular sieving

All along the winemaking process, conditioning and aging, wine is susceptible to be contaminated by different molecules. Contaminations can have various origins, related to wine microorganisms or as a result of an exogenous contamination. The aforementioned contamination of the wine can be caused by the migration of molecules from the materials in contact with the wine or by a contamination from exogenous molecules present in the air. Regardless of the source of the contamination, mainly two types of consequences can be observed.

Assessing the effect of oak derived aromas on mouthfeel perception in Chardonnay wine

Mouthfeel is an important quality parameter for Chardonnay wines, particularly those aged in oak. While research on mouthfeel has traditionally focused on the impact of non-aromatic compounds, the role of aroma compounds has largely been over looked. However, in wine as well as other food interactions between retronasal aroma and mouthfeel have been noted. The goal of this research was to investigate the impact of wine aroma on the perception of mouthfeel. Because of the importance of oak aging in the development of Chardonnay mouthfeel, the impact of oak aromas on perceived mouthfeel was explored. Aroma compounds associated with oak (ethyl palmitate, eugenol, furfural, isoeugenol, syringaldehyde, vanillin and whiskey lactone) were added to two different Chardonnay wines; one with no oak influence and one fermented in neutral oak. Low and high concentrations of the compounds were added based on concentrations typically found in barrel aged Chardonnay wine.

Ageing of sweet wines: oxygen evolution according to bung and barrel type

Barrel ageing is a crucial step in the wine process because it allows many changes to the wine as enrichment, colour stabilization, clarification and also a slow oxygenation. Effects of the oak barrel have to be known to prevent oxidation of the wine. The type of bung used during ageing is also a parameter to consider. Ageing sweet wines in barrel is a real challenge. These wines may need some oxygen at the beginning of ageing but they should be protected at the end of their maturation, to avoid oxidation.

Grape byproducts as source of resveratrol oligomers for the development of antifungal extracts

Grape canes are a non-recycled byproduct of wine industry (1-5 tons per hectare per year) containing valuable phytochemicals of medicine and agronomical interest. Resveratrol and wine polyphenols are known to exert a plethora of health-promoting effects including antioxidant capacity, cardioprotection, anticancer activity, anti-inflammatory effects, and estrogenic/antiestrogenic properties (Guerrero et al. 2009). Additionally, resveratrol is a major phytoalexin produced by plants in response to various stresses and promotes disease resistance (Chang et al. 2011). Our project aims to develop polyphenol-rich grape cane extracts to fight phytopathogenic or clinically relevant fungi. We initiate the project with the development of analytical methods to analyze resveratrol mono- and oligomers (dimers, trimers and tetramers) from grape canes and we evaluate their potential activity against clinically relevant opportunistic fungal pathogens (Houillé et al. 2014).

Comprehensive exploration of wine aroma-related compounds as promoted by alternative vinification procedures in case of Zelen (Vitis vinifera L.) grapes processing

Not only vintner’s decisions in the vineyard, but also winemaker’s choices of technology approaches in the cellar play a significant role in the final wine style and quality. Whereas traditional technologies within chosen terroir are quite well explored and thus somehow predictable, there is no proper knowledge available on possible outcomes in case of implementing novel, alternative winemaking strategies. To reveal their effects on wine aroma compounds and sensory characteristics, two alternative strategies
(cryoextraction or addition of whole grape berries during last stages of fermentation) were compared to classical Vipava valley winemaking approach as normally used for an autochthonous variety Zelen. After separate vinification and bottling, all the experimental wines were subjected to semiquantitative metabolic profiling of volatile compounds (VOCs) by means of GC/MS and were then also sensorialy evaluated by pre-trained panel.