Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of some agronomic practices on grape skins anthocyanin content

Impact of some agronomic practices on grape skins anthocyanin content

Abstract

Wine colour is the first quality characteristic to be assessed, especially regarding red wines. Anthocyanins are very well known to be the main responsible compounds for red wine colour. Red cultivars can synthesize and accumulate anthocyanins in berry skin to express their colour. However, anthocyanin accumulation is often influenced by a series of factors, such as genetic regulation, phytohormones, environmental conditions and viticultural management. Therefore, it is mandatory to improve grape anthocyanic content, namely by viticulture practices preferably those that can contribute to maintain or increase the sustainability of the ecosystem. The aim of this work was to study how different agronomic practices (cover crops, irrigation and crop level), in a Mediterranean Portuguese vineyard with cv. Trincadeira, one of the most important cultivar in this region, influence the amount of anthocyanins in grapes and therefore affect the wine quality. The research was carried out in 2010 on a vineyard located at Évora, south of Portugal, in a 9 year-old grapevines. The trained system was a vertical shoot positioning with a pair of movable wires, being the vines spur-pruned on a bilateral Royat cordon system. The experimental design was a split-split-plot with 4 replications and three factors per replicate: two types of soil management between rows, three different irrigation management and two crop levels, in a total of 48 elemental plots. Each elemental plot had 4 adjacent rows with 12 vines each, and all the measurements were made in the two central rows. The two types of soil management studied between rows, already existing in the vineyard, were: Traditional Tillage (TT) (soil cultivation to a height of 15 cm, 3 times during spring) and Natural Cover Crops (NCC) with resident species. In both treatments a 0.8 m-wide herbicide strip was achieved beneath the vines allowing a width of the planter of about 1.7 m. The three different irrigation managements studied were: Standard – rainfed, Early Irrigation (EI) – weekly irrigation of 15.6 mm since three weeks before veraison until one week before harvesting, and Late Irrigation (LI) – 12 mm application per week since one week after veraison until two weeks before picking. At harvest, berries were randomly hand-picked and analyzed. Anthocyanins were determined by HPLC-DAD. In the edapho-climatic conditions of Alentejo, the irrigation affected berry weight, pH and titratable acidity and also induced significative differences in individual anthocyanins. Concerning soil management, natural cover crop seems to be a promising practice when comparing to traditional tillage, since grapes from NCC presented higher values of soluble solids and anthocyanins, besides being an advantageous technique for soil conservation, a real problem in our conditions. Diminishing crop level originated grapes with higher soluble solids, lower acidity, higher pH and higher content of individual anthocyanins.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Maria Cabrita*, Ana Maria Costa Freitas, Eva Peréz-Álvarez, Joao Barroso, M. Rosario Salinas, Raquel Garcia, Rosario Sánchez-Gomez, Teresa Garde-Cerdán

*Universidade de Évora

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Modulating role of SO2 in white wine protein haze formation

Despite the extensive research performed during the last decades, the multifactorial mechanism responsible for the white wine protein haze formation is not fully characterized. Herein, a new model is proposed, which is based on the experimental identification of sulfur dioxide as a major modulating factor inducing wine protein haze upon heating. As opposed to other reducing agents, such as 2-mercaptoethanol, dithiothreitol and tris(2-carboxyethyl)phosphine hydrochloride (TCEP), the addition of SO2 to must/wine upon heating cleaves intraprotein disulfide bonds, hinders thiol-disulfide exchange during protein interactions and can lead to the formation of novel inter/intraprotein disulfide bonds. Those are eventually responsible for wine protein aggregation which follows a nucleation-growth kinetic model as shown by dynamic light scattering [1].

Flavanol glycosides in grapes and wines : the key missing molecular intermediates in condensed tannin biosynthesis ?

Polyphenols are present in a wide variety of plants and foods such as tea, cacao and grape1. An important sub-class of these compounds is the flavanols present in grapes and wines as monomers (e.g (+)-catechin or (-)-epicatechin), or polymers also called condensed tannins or proanthocyanidins. They have important antioxidant properties2 but their biosynthesis remains partly unknown. Some recent studies have focused on the role of glycosylated intermediates that are involved in the transport of the monomers and may serve as precursors in the polymerization mechanism3, 4. The global objective of this work is to identify flavanol glycosides in grapes or wines, describe their structure and determine their abundance during grape development and in wine.

DNA and type of grain: which factor does better explain sensory differences of sessile and pedunculate oaks?

Sessile oak and pedunculate oak have shown several differences of interest for enological purposes. Tannic and aromatic composition among sessile oak or pedonculate oak has been well studied. Sessile oak is generally more aromatic than pedunculated, while the later is more tannic. This scientific point of view is rarely applied to classify oak in cooperages. Most coopers use the type of grain to distinguish wide and thin grain.

Use of computational modelling for selecting adsorbents for improved fining of wine

The occurrence of faults and taints in wine, such as those caused by microbial spoilage or various taints, have resulted in significant financial losses to wine producers. The wine industry commits significant financial resources towards fining and taint removal processes each year. Fining involves the addition of one or more adsorptive substrates to juice or wine to bind certain components, thus reducing their concentration [1]. However, these processes are often not selective and can also remove desirable flavour and aroma compounds.

Innovations in the use of bentonite in enology: interactions with grape and wine proteins, colloids, polyphenols and aroma compounds.

The use of bentonite in oenology rounds around the limpidity and the stability that determine consumer acceptability. As a matter of fact, the haze formation in wine reduces its commercial value and makes it unacceptable for sale. Stabilization treatments are, therefore, essential to ensure a long-time limpidity and to forecast the formation of deposits in the bottle. Bentonite that is normally used in oenology for clarifying-fining purpose, shows a natural clay-based mineral structure allowing it to swell and to jelly in water and hence in must and wine.