GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Utilization of remote sensing technology to detect riesling vineyard variability

Utilization of remote sensing technology to detect riesling vineyard variability

Abstract

Context and purpose of the study – Vineyard blocks can vary spatially with respect to several viticulturally significant qualities such as soil variables, vine vigor, vine physiology, yield components, and berry composition. The ability to detect this variation enables the application of precision viticulture, whereby intra‐vineyard variability can be readily identified and corresponding responses can be made. Although it has been well established that this variation can exist, its detection is often difficult, with vineyard blocks spanning large areas and variation occurring over several variables. The aim of this project was to determine if remote and proximal sensing technologies could be used to detect this vineyard variation in six Ontario Riesling vineyards over a 3‐year period.

Material and methods – Six commercial Riesling vineyards across the Niagara Peninsula in Ontario, Canada were selected and 80‐100 grapevines, in a ≈8 m x 8 m grid pattern, were identified and geolocated. From these vines, the following variables were measured in 2015‐2017: soil moisture, vine water status (leaf water potential, leaf ψ; leaf stomatal conductance, gs), vine size, yield components, berry composition, winter hardiness, and grapevine leaf roll‐associated virus (GLRaV) infection. Furthermore, two sensing technologies—a ground‐based red/green/blue (RGB) proximal sensing system (GreenSeeker), and an unmanned aerial vehicle (UAV) with two sensors (RGB and thermal), collected electromagnetic reflectance from each vineyard block. These data were transformed into normalized difference vegetation index (NDVI). Lastly, replicate wines were made from grapes harvested from areas of low vs high NDVI. Wines were subjected to sensory sorting and the sorting data were subjected subsequently to correspondence analysis, creating a Chi‐square metric map that displayed the wines and their descriptors on a descriptor‐based space. The overall hypothesis was that maps produced from NDVI data could be used to detect variation in other variables such as leaf ψ, gs, berry composition, and GLRaV status, as well as implicate wine quality.

Results – NDVI maps demonstrated similar spatial configurations to maps of yield, vine size, berry weight, water status, and berry composition. Spatial zones corresponding to high NDVI were associated with zones of high vine water status, vine size, yield, titratable acidity (TA) and low soluble solids and terpene concentration. NDVI data as well as vine size, leaf ψ, gs, GLRaV infection, winter hardiness, and berry composition consisted of significant spatial clustering within the vineyard. Both the proximal and UAV technologies produced maps of similar spatial distributions; however, the GreenSeeker NDVI data provided more significant relationships with agricultural data compared to the UAV NDVI. Direct positive correlations were observed between NDVI vs. vine size, leaf gs, leaf ψ, GLRaV infection, yield, berry weight, and TA and inverse correlations with soluble solids and terpene concentration. Wines created from areas of high vs low NDVI differed slightly in basic wine composition (pH, TA, ethanol). Sensorially, panelists were often able to distinguish between wines made from high vs. low NDVI zones and associate those wines with specific descriptors. Ultimately, remote sensing demonstrates the ability to consistently detect areas within a vineyard differing in several important variables, which have implications for vine physiology, berry composition, and wine sensory attributes.

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Andrew REYNOLDS (1), Briann DORIN (1), Hyun‐Suk LEE (1), Adam SHEMROCK (2), Ralph BROWN (1), Marilyne JOLLINEAU (1)

(1) Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
(2) AirTech UAV Solutions INC. 1071 Kam Ave, Inverary, ON K0H 1X0, Canada

Contact the author

Keywords

 Viticulture, Remote Sensing, Terroir, UAV, Precision viticulture

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Teasing apart terroir: the influence of management style on native yeast communities within Oregon wineries and vineyards

Newer sequencing technologies have allowed for the addition of microbes to the story of terroir. The same environmental factors that influence the phenotypic expression of a crop also shape the composition of the microbial communities found on that crop. For fermented goods, such as wine, that microbial community ultimately influences the organoleptic properties of the final product that is delivered to customers. Recent studies have begun to study the biogeography of wine-associated microbes within different growing regions, finding that communities are distinct across landscapes. Despite this new knowledge, there are still many questions about what factors drive these differences. Our goal was to quantify differences in yeast communities due to management style between seven pairs of conventional and biodynamic vineyards (14 in total) throughout Oregon, USA. We wanted to answer the following questions: 1) are yeast communities distinct between biodynamic vineyards and conventional vineyards? 2) are these differences consistent across a large geographic region? 3) can differences in yeast communities be tied to differences in metabolite profiles of the bottled wine? To collect our data we took soil, bark, leaf, and grape samples from within each vineyard from five different vines of pinot noir. We also collected must and a 10º brix sample from each winery. Using these samples, we performed 18S amplicon sequencing to identify the yeast present. We then used metabolomics to characterize the organoleptic compounds present in the bottled wine from the blocks the year that we sampled. We are actively in the process of analysing our data from this study.

How does aromatic composition of red wines, resulting from varieties adapted to climate change, modulate fruity aroma?

One of the major issues for the wine sector is the impact of climate change linked to the increasing temperatures which affects physicochemical parameters of the grape varieties planted in Bordeaux vineyard and consequently, the quality of wine. In some varietals, the attenuation of their fresh fruity character is accompanied by the accentuation of dried-fruit notes [1]. As a new adaptive strategy on climate change, some winegrowers have initiated changes in the Bordeaux blend of vine varieties [2]. This study intends to explore the fruitiness in wines produced from grape varieties adapted to the future climate of Bordeaux. 10 commercial single–varietal wines from 2018 vintage made from the main grape varieties in the Bordeaux region (Cabernet franc, Cabernet-Sauvignon and Merlot) as well as from indigenous grape varieties from the Mediterranean basin, such as Cyprus (Yiannoudin), France (Syrah), Greece (Agiorgitiko and Xinomavro), Portugal (Touriga Nacional) and Spain (Garnacha and Tempranillo), were selected among 19 samples using sensory descriptive analyses. Both sensory and instrumental analyses were coupled, to investigate their fruity aroma expression. For sensory analysis, samples were prepared from wine, using a semi preparative HPLC method which preserves wine aroma and isolates fruity characteristics in 25 specific fractions [3,4]. Fractions of interest with intense fruity aromas were sensorially selected for each wine by a trained panel and mixed with ethanol and microfiltered water to obtain fruity aromatic reconstitutions (FAR) [5]. A free sorting task was applied to categorize FAR according to their similarities or dissimilarities, and different clusters were highlighted. Instrumental analysis of the different FAR and wines demonstrated variations in their molecular composition. Results obtained from sensory and gas chromatography analysis enrich the knowledge of the fruity expression of red wines from “new” grape varieties opening up new perspectives in wine technology, including blending, thus providing new tools for producers.

Early detection project – make a GTD infection visible without disease symptoms

The presence of grapevine trunk diseases (GTDs) related pathogens leads to severe economic losses in wine‐growing regions all over the world

Impact of type of winemaking vessel on the chemical composition and sensory attributes of Sauvignon blanc wines

In this video recording of the IVES science meeting 2024, Mariona H Gil i Cortiella (Universidad Autónoma de Chile, Santiago de Chile, Chile) speaks about the impact of type of winemaking vessel on the chemical composition and sensory attributes of Sauvignon blanc wines. This presentation is based on an original article accessible for free on IVES Technical Reviews.

Influence of the type of tanks employed for winemaking on red wine phenolic composition

The grape maturation process is being affected by the consequences of global climate change and, as a result, there is a gap at harvest time between the technological maturity of grapes (mostly the concentration of sugar and acids) and its phenolic quality. Due to this gap, the wines elaborated using those grapes show a non-adequate phenolic composition, which results in defects on its color and astringency characteristics. Astringency is mainly related to the salivary protein precipitation because of the interaction not only with wine flavanols but also with other wine phenolics, such as flavonols or different pigments.