OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Influence of pre-harvest elicitors treatment during ripening period on phenolic composition in Monastrell grapes

Influence of pre-harvest elicitors treatment during ripening period on phenolic composition in Monastrell grapes

Abstract

Phenolic compounds are very importants in crop plants, which is why there have been the subject of a large number of studies. There are three main reasons for optimising the level of phenolic compounds in crop plants: their physiological role in the plants, their technological significance for food processing, and their nutritional characteristics. 

Several techniques have been applied to improve the phenolic content of grapes. One such strategy developed in recent years is to apply elicitors, molecules that are able to trigger plant defence responses, thus contributing to plant resistance against pathogen attacks, and to activate secondary pathways, resulting in the accumulation of phenolic and aromatic compounds. In agricultural practice, elicitor treatment may represent an effective alternative to conventional agrochemicals [1]. 

In recent years, elicitor treatments of several grape varieties and consequent modifications in the corresponding grape and wine composition have been reported. For example, the pre-harvest application of BTH to Monastrell grapes led to increase levels of phenolic compounds in the treated grapes and the corresponding wines. [1]. It can be said that elicitation is a good strategy for inducing the synthesis of different classes of bioactive secondary metabolites, although the efficacy of such treatment mainly depends on individual plant genetics, the nature of the elicitor and the dose used. 

Our research group has focused its interest on the effect of the pre-harvest application (at veraison) of two elicitors: benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH) and methyl jasmonate (MeJ), and a mixture of both on the phenolic composition during ripening period in two consequtives seasons (2016 and 2017); in order to be assessed whether veraison is the best moment for applying the elicitor or whether the application date could be optimised to obtain a maximum phenolic contents at harvest. 

The results were differents in function of the year study, obtaining higher concentrations of phenolic compounds in 2016 compared to 2017. On the other hand, the treatments showed higher results in all phenolic compounds studied excepted in the stilbenes when there were compared to the control grapes. Finally, some of the phenolic compounds analyzed obtained higher concentrations before harvest date. Therefore, our future objective will be to optimise the moment of elicitor application in order to obtain their maximum effect at the moment of harvest, probably by delaying the application until some weeks after veraison. 

[1] Ruiz-García, Y. et al. Journal of Agricultural and Food Chemistry, 2012, 60, 1283.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Rocio Gil-Muõz, Diego Fernando Paladines Quezada, Juan Daniel Moreno-Olivares, Jose Ignacio Fernández Fernández

Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario C/ Mayor s/n La Alberca 30150 (Murcia-Spain)

Contact the author

Keywords

Elicitors, Monastrell, Phenolic compounds, Grape 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

ALCOHOLIC FERMENTATION AND COLOR OF ROSÉ WINES: INVESTIGATIONS ON THE MECHANISMS RESPONSIBLE FOR SUCH DIVERSITY

Color is one of the key elements for the marketing of rosé wines due to their packaging in transparent bottles. Their broad color range is due to the presence of pigments belonging to phenolic compounds extracted from grapes or formed during the wine-making process. However, the mechanisms responsible for such diversity are poorly understood. The few investigations performed on rosé wines showed that their phenolic composition is highly variable, close to that of red wines for the darkest rosés but very different for light ones [1]. Moreover, large variations in the extent of color loss taking place during fermentation have been reported but the mechanisms involved and causes of such variability are unknown.

Enological potential of autochtonous grape cultivars from Castilla y León (Spain) to elaborate sparkling wines: polyphenolic and biogenic amines and amino acid composition of base wines

In white wines, Verdejo wine stands out because of its high content in total amino acids. The total content in biogenic amines was low in all wines analyzed and putrescine was the predominant biogenic amine.

A sensometabolomic approach to understand wine mouthfeel percepts

Targeted analytical methods can overlook compounds that are a priori unknown to play a role in the mouthfeel sensations. This limitation can be overcome with the information provided by untargeted metabolomic analysis using UPLC‐QTOF-MS. To this end, an untargeted metabolomic approach applied to 42 red wines has allowed development of a model with predictive capacity by cross-validation for the “dry”, “oily” and “unctuous” sensations perceived by a sensory panel. The optimal PLS model for “dry” retained compounds with positive regression coefficients (≥ 0.17) including a trimer procyanidin, a peptide, and four anthocyanins.

Viticultural potential assessment and its spatial delineation analysis in Goriška Brda viticultural area

Viticultural potential has a complex conditioning, determined by relief,
soil, climate and lithology. Delineation of viticultural potential from vineyard areas is essential for the purpose to collect the necessary data for viticultural zoning. Using this data, we can achieve greater yield quality, which is the most important criteria in viticulture. The main purpose of this research is
characterizing of viticultural potential and zoning of homogeneous viticultural zones in Goriška Brda region by assessing the suitability of defined ecological factors.

Physicochemical behaviour of wine spirit and wine distillate aged in Sherry Casks® and Brandy casks

Brandy is a spirit drink made from “wine spirit” (<86% Alcohol by Volume – ABV; high levels of congeners and they are mainly less volatile than ethanol), it may be blended with a “wine distillate” (<94.8%ABV; low levels of congeners and these are mainly more volatile than ethanol), as long as that distillate does not exceed a maximum of 50% of the alcoholic content of the finished product[1]. Brandy must be aged for at least 6 months in oak casks with <1000L of capacity. During ageing, changes occur in colour, flavour, and aroma that improve the quality of the original distillate.