OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Wine tannins: What place for grape seed?

Wine tannins: What place for grape seed?

Abstract

Phenolic compounds are among the most important quality factors of wines. They contribute to the organoleptic characteristics of wine such as colour, astringency, and bitterness. Although tannins found in wine can come from microbial and oak sources, the main sources of polyphenols are skin and seed from grapes. Yet, the link between grape seed phenolic content and wine composition, or even the link between seed maturity stage and wine composition are poorly studied. This work describes and explains the seed tannins kinetics release in wine, but also the impact of seed maturity stage on seed tannins extractability. 

The polyphenol content and composition of seeds at three different grape maturity stages were characterized (fifteen days before harvest, harvest and fifteen days after harvest). After that, an original approach of nanovinification was conducted. At each maturity stages three winemaking modalities have been produced in duplicate: (i) a control modality, (ii) a seed modality made of exclusively with seed and (iii) a skin modality made of exclusively with skin. The evolution of seed tannins release and tannins wine content has been followed during the winemaking, from alcoholic fermentation to maceration. 

Independently from the grape maturity stage, skin tannins are present at the first step of winemaking contrarily to seed tannins presence which is progressive all along the vinification. The results indicated that (+)-catechin is the less extractable free flavan-3-ols compared to (-)-epicatechin and (-)-epicatechin gallate. Furthermore the mean degree of polymerization of seed proanthocyanidins seems to be directly linked to their extractability, raising the question of the impact of tannins interaction and cellular location on tannins extractability.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Pauline Rousserie, Soizic Lacampagne, Sandra Vanbrabant, Amélie Rabot, Laurence Geny-Denis

Institut des Sciences de la Vigne et du Vin 210 Chemin de Leysotte 33140 VILLENAVE D’ORNON, France 

Contact the author

Keywords

Grape Maturity, Tannins, Extraction, Seed 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Impact of fining agents on Swiss Pinot noir red wines

In the context of climate change, excessive bitterness and astringency in wines have become increasingly prevalent. While variety selection and viticultural practices offer long-term solutions, they require considerable time before yielding practical results. In contrast, fining remains an accessible and immediate tool for winemakers.

What is the best time to harvest grapes destined for withering? Ripeness and dehydration length affect phenolic composition of Nebbiolo grapes

Sfursat di Valtellina is a DOCG reinforced wine produced in Valtellina from partially withered red grapes of Vitis vinifera L. cv. Nebbiolo. The grape ripeness degree and the dehydration process strongly influence the physicochemical characteristics of grapes [1, 2, 3]. In particular, grape skin and seeds contain several classes of phenolic compounds strictly associated with red wine quality, which are significantly affected by these factors [4]. The aim of this research is to assess the combined influence of different ripeness levels and withering rates on the standard chemical composition and phenolic profile of winegrape in order to provide new insights and approaches to the management of withering, searching for the valorization of grape potentialities.

Combined high-resolution chromatography techniques and sensory analysis as a support decision system tool for the oenologist

One of the main challenges in the wine industry is to understand how different wine processing techniques and practices can influence the overall quality of the final product.

IBMP-Polypenol interactions: Impact on volatility and sensory perception in model wine solution

3-Isobutyl-2-methoxypyrazine (IBMP) is one of the key molecules in wine aroma with a bell pepper aroma and a very low threshold in wine, 1-6 ng/L for white wine and 10-16 ng/L in red wine1. The differences in these thresholds are likely due to IBMP-non volatile matrix interactions. It has indeed been shown that polyphenols may influence the volatility of flavor compounds2. In the present study, we focus on IBMP-polyphenols interactions in relation to volatility and sensory perception in model wine solution. Methods: 1. GC-MS Static Headspace Analysis: Samples were analyzed by Static headspace analysis with an Agilent 7890A gas chromatograph coupled to HP 5975C mass spectrometry detector (Agilent Technologies, Santa Clara, CA, USA).

Regulation of terpene production in methyl jasmonate treated cell-cultures

Terpenes are responsible for flavors and aromas of grapes, however, they also protect from radiation, participate in biotic stress and antioxidant mechanisms. The phytohormone methyl jasmonate (MeJA) mediates many of these stress responses and has been associated with increased terpene content in berries. Here, we generated transcriptomic data of Vitis vinifera cv. ‘Gamay’ cells treated with MeJA (100 μM) and cyclodextrins (50 μM) to understand these responses. Ontology analysis revealed that up-regulated genes (URGs) were enriched in jasmonic acid biosynthesis and signaling terms, as expected. Inspection of transcription factors (TFs) among URGs allowed us to study uncharacterized TFs.