terclim by ICS banner
IVES 9 IVES Conference Series 9 Characterization of bunch compactness and identification of associated genes in a diverse collection of cultivars of Vitis vinifera L.

Characterization of bunch compactness and identification of associated genes in a diverse collection of cultivars of Vitis vinifera L.

Abstract

Compactness is a complex trait of V. vinifera L. and is defined ultimately by the portion of free space within the bunch which is not occupied by the berries. A high degree of compactness results in poor ventilation and consequently a higher susceptibility to fungal diseases, diminishing the quality of the fruit. The easiness to conceptualize the trait and its importance arguably contrasts with the difficulty to measure and quantify it. However, recent technical advancements have allowed to study this attribute more accurately over the last decade. Our main objective was to explore the underlying genetics determining bunch compactness by applying updated phenotyping methods in a collection of V. vinifera L. cultivars with a wide genetic diversity.
A collection of 116 genotypes composed by 24 wine, 56 table and 26 mixed usage varieties was characterized over two seasons measuring several traits determining Compactness Indexes (CI), as proposed in literature. CI-18 performed the best on this collection and genotypes with extreme values with loose and dense bunches were further studied (n = 10 each group). RNA of these samples was collected at key developmental stages to study the expression of VvUCC1, VvGRF4 and other genes associated to this trait. We also evaluated the performance of automated phenotyping for this wide collection of varieties by applying precision phenotyping through 3D scan and point cloud library-based methods. Combining this data with 127,631 informative SNPs identified by genotyping-by-sequencing could lead to identify further loci associated with this attribute through GWAS.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Marco Meneses1, Renato Fuentes1, Ignacia Fuentes1, Claudia Muñoz-Espinoza2, Carolina Araya1, Juan Iribarra1, Erika Salazar1, Claudio Meneses3, Katja Herzog4, Patricio Hinrichsen1*

1 Instituto de Investigaciones Agropecuarias, INIA La Platina. Santiago, Chile.
2 Agronomy Faculty, Universidad de Concepción. Chillán, Chile.
3 Agronomy Faculty, P. Universidad Católica de Chile. Santiago, Chile.
4 Julius Kühn-Institut. Institute for Grapevine Breeding. Geilweilerhof, Germany.

Contact the author*

Keywords

Bunch compactness, qPCR, GBS, automated phenotyping

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Effect of soil particle size on vine water status, leaf ABA content and berry quality in Nebbiolo grapes

The root and shoot abscisic acid (ABA) accumulation in response to water deficit and its relation with stomatal conductance is longtime known in grapevine. ABA-dependent and ABA-independent signalling response to osmotic stress coexist in sessile plants. In grapevine, the signaling role of ABA in response to water stress conditions and its influence on berry quality is critical to manage grapevine acclimation to climate change.

Control of bacterial growth in carbonic maceration winemaking through yeast inoculation

Controlling the development of the bacterial population during the winemaking process is essential for obtaining correct wines[1]. Carbonic Maceration (CM) wines are recognised as high-quality young wines. However, due to its particularities, CM winemaking implies a higher risk of bacterial growth: lower SO2 levels, enrichment of the must in nutrients, oxygen trapped between the clusters… Therefore, wines produced by CM have slightly higher volatile acidity values than those produced by the destemming/crushing method[2].

The role of the environmental factor as a component of the terroir in Spain (A.O. Cigales, NW Spain)

The components and the methodology for characterization of the terroir in Spain have been described by Gómez-Miguel et al.

OPTIMIZING THE IDENTIFICATION OF NEW THIOLS AT TRACE LEVEL IN AGED RED WINES USING NEW OAK WOOD FUNCTIONALISATION STRATEGY

During bottle aging, many thiol compounds are involved in the expression of bouquet of great aged red wines according to the quality of the closure.1,2 Identifying thiol compounds in red wines is a challenging task due several drawbacks including, the complexity of the matrix, the low concentration of these impact compounds and the amount of wine needed.3,4
This work aims to develop a new strategy based on the functionalisation of oak wood organic extracts with H₂S, to produce new thiols, in order to mimic what can happen in red wine during bottle aging. Following this approach and through sensory analysis experiments, we demonstrated that the vanilla-like aroma of fresh oak wood was transformed into intense “meaty” nuances similar to those found in old but non oxidized red wines.

Inhibitory effect of sulfur dioxide, ascorbic acid and glutathione on browning caused by laccase activity

AIM: The aim of this work was to study the inhibitory effect of the three most frequently used wine antioxidants – sulfur dioxide, ascorbic acid and glutathione – on the kinetics of browning caused by Botrytis cinerea laccase using a grape juice synthetic model in which (-)-epicatechin was the substrate.