OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical tools using electromagnetic spectroscopy techniques (IR, fluorescence, Raman) 9 Development of FTIR partial least squares models for polyphenol quantification in red wine during fermentation

Development of FTIR partial least squares models for polyphenol quantification in red wine during fermentation

Abstract

Polyphenolic compounds are considered to have a major impact on the quality of red wines. Sensory impact, such as astringency and bitterness, stems directly from tannin composition. Thenceforth, quick analytical measurement of phenolic compounds appears to be a real challenge for winemaking monitoring and process control. 

Many methods were developed to analyzed polyphenols in wine, but they are time-consuming and require chemistry skills and equipment, not suitable for a rapid routine analysis. A reliable and rapid method to obtain this kind of measurement is Fourier Transform Infrared (FTIR) spectroscopy. 

Thus, in order to develop new methods based on FTIR spectroscopy, this work first sought to follow polyphenols during winemaking in a vineyard of Bordeaux area, through two different vintages, different type of winemaking and grape varieties. For this purpose, tannin concentration was analysed by precipitation with Bovine Serum Albumin assay and Methylcellulose assay. In order to obtain the most complete information, the samples were also analyzed by HPLC, using the phloroglucinolysis reaction to obtain the mean degree of polymerization and indication on galloylation, procyanidin and prodelphinidin ratio. 

The data collected were statistically analyzed by Partial Least Squares regression method for quantification of laboratory-determined polyphenols from FTIR spectra. Cross validation was used to validate the predictive performance of the models. 

Correlations obtained show good results for all parameters studied, with coefficient of determination (r2) for both calibration and cross validation larger than 0.8. This work is the first step for the construction of robust models to quantify different polyphenols parameters during winemaking by FTIR spectroscopy. 

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Clément Miramont, Michaël Jourdes, Torben Selberg, Henrik Vilstrup Juhl, Lars Nørgaard, Pierre-Louis Teissedre

Unité de recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France 
USC 1366 INRA, IPB, INRA, ISVV, F-33140 Villenave d’Ornon, France 
FOSS Analytical A/S, DK-3400 Hillerød, Denmark 

Contact the author

Keywords

Polyphenol, Fourier Transform Infrared, Partial Least Squares regression, Spectroscopy 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Wine lees: characterization and valorization by kombucha fermentation

Winemaking generates various types of residues (vine shoots, stalks, pomace, wine lees and filtration cakes) which can have a notable environmental and economic impact. Wine by-products are rich in bioactive compounds and therefore their valorization can be beneficial on different levels.

Techniques to study graft union formation in grapevine 

Grapevines are grown grafting in most viticultural regions. Grapevine rootstocks are either hybrids or pure species of different American Vitis spp. (particularly V. berlandieri, V. rupestris and V. riparia), which are primarily used to provide root resistance to the insect pest Phylloxera. In addition to Phylloxera resistance, ideally grapevine rootstocks should be resistant to other soil borne pathogens and adapted to abiotic stress conditions. New rootstocks have the potential to adapt agriculture to climate change without changing the characteristics of the harvested product. However, high grafting success rates are an essential prerequisite.

Improving shelf life of viticulture-relevant biocontrol and biostimulant microbes using CITROFOL® AI as liquid carrier

Bacillus velezensis and Trichoderma harzianum are relevant microorganisms used in viticulture as biocontrol agents against pathogens of trunk (e.g. Phaeoacremonium minimum), leaves (e.g. Plasmopara viticola) or fruit (e.g. Botrytis cinerea), or as biostimulants, improving the resilience of plants against biotic or abiotic stressors through different direct and non-direct interactions.
In this biotechnological approach, formulation plays a crucial role. Controlling water activity in the product, thus stabilising microbial viability is key to ensuring effective application. We present the benefits of the citrate ester CITROFOL® AI (triethyl citrate) as a novel bio-based carrier liquid in microbial formulations. CITROFOL® AI is safe for humans and the environment, thus offering a promising base for sustainable treatments in viticulture.

NIR spectroscopy as a contacless rapid tool to estimate the amino acids profile in intact grape berries

Nitrogen composition of grape berries plays a key role in determining wine quality, affecting the development of alcoholic fermentation and the formation of volatile compounds. Grape nitrogen composition is influenced by several factors such as viticultural practices, soil management, timing or rate of fertilization and use of rootstock, among others.In this study a proximal, non-destructive tool based on NIR spectroscopy is presented to track the accumulation of a wide range of amino acids in intact grape berries during the ripening process.

Chemical and sensory evolution of total and partial dealcoholized wine in a can

In recent years, wine consumption has been evolving towards new trends. On the one hand, awareness of health and responsible consumption has been growing, and with it, the demand for wines with lower or without alcohol content [1].