Terroir 2012 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2012 9 Grapegrowing soils 9 Unexpected relationships between δ13C, water deficit, and wine grape performance

Unexpected relationships between δ13C, water deficit, and wine grape performance

Abstract

Water nutrition is crucial for wine grape performance. Thus soil investigation aims at characterizing spatial and temporal variability of available water. A possible strategy is to integrate monitoring and proxies of water availability. The carbon isotope ratio δ13C, measured in the alcohol of wine, is a promising tool to determine water stress during the vine growing season and vine performance. A research study was set up to evaluate the relationships between δ13C, soil water deficit, and wine grape viticultural and oenological performance. The trial was carried out for three years in the Chianti Classico wine production district (Central Italy), on not irrigated vineyards of a premium farm. The reference variety was Sangiovese. Eleven sites were chosen for vine monitoring and grape sampling. The performance parameters were alcohol and sugar content, sugar accumulation rate, mean berry weight, and extractable polyphenols. δ13C, stem water potential, and soil water deficit, as difference between soil water content, monitored during the veraison-harvest, and the standard wilting point, were measured. δ13C resulted directly related to stem water potential and soil water deficit, and showed absence to only moderate water stress. However, the relationship with viticultural and oenological results was contrary to the expectation, that is, the performance increased when the water stress decreased. The explanation was that the viticultural husbandry was so competing for the plants (high plant density, high pruning, weak rootstock, grass cover) that the effects of water stress on grape quality were magnified. In conclusion, δ13C cannot be directly used to estimate vine performance.

DOI:

Publication date: August 28, 2020

Issue: Terroir 2012

Type: Article

Authors

Edoardo A.C. COSTANTINI (1), Alessandro AGNELLI (1), Pierluigi BUCELLI (1), Aldo CIAMBOTTI (2), Valentina DELL’ORO (2), Laura NATARELLI (1), Sergio PELLEGRINI (1), Rita PERRIA (3), Simone PRIORI (1), Paolo STORCHI (3), Christos TSOLAKIS (2), Nadia VIGNOZZI (1)

(1) CRA-ABP, Research Centre for Agrobiology and Pedology, Florence, Italy
(2) CRA-ENO Research Centre for Oenology, Asti, Italy; 3CRA-VIC Research Unit for Viticulture, Arezzo, Italy

Contact the author

Keywords

Carbon, water availability, proxy, red grape, Tuscany

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

EVALUATING WINEMAKING APPLICATIONS OF ULTRAFILTRATION TECHNOLOGY

Ultrafiltration is a process that fractionates mixtures using semipermeable membranes, primarily on the basis of molecular weight. Depending on the nominal molecular weight cut-off (MWCO) specifications of the membrane, smaller molecules pass through the membrane into the ‘permeate’, while larger molecules are retained and concentrated in the ‘retentate’. This study investigated applications of ultrafiltration technology for enhanced wine quality and profitability. The key objective was to establish to what extent ultrafiltration could be used to manage phenolic compounds (associated with astringency or bitterness) and proteins (associated with haze formation) in white wine.

Towards a better understanding of cultivar susceptibility to esca disease: results from a pluriannual common garden monitoring

Grapevine (Vitis vinifera L.) exhibits a high level of genetic and phenotypic diversity among the approximately 6000 cultivars recorded. This perennial crop is highly vulnerable to numerous fungal diseases, including esca, which is a complex vascular pathology that poses a significant threat to the wine sector, as there is currently no cost-efficient curative method[1]. In this context, an effective approach to mitigate the impact of such diseases is by leveraging the crop’s genetic diversity. Indeed, susceptibility to esca disease appears to vary between cultivars, under artificial or natural infection. However, the mechanisms and varietal characteristics underlying cultivar susceptibility to esca are still unknown.

Post-plant nematicides: too little, too late for Northern root-knot nematode management

Context and Purpose. Management of plant-parasitic nematodes in perennial cropping systems such as wines grapes is challenging.

The relationship between wind exposure and viticultural performance of Vitis vinifera L. cv. Merlot in a coastal vineyard (South Africa)

The South Western Cape of South Africa is exposed to strong southerly and south easterly synoptic winds during the growth period of the grapevine. The development of sea breezes in the afternoon is also a phenomenon associated with the ripening period of grapes cultivated in this coastal area. Wind is one of the environmental variables having the greatest spatial variation but the implications of regular exposure to wind for the performance of the grapevine has not yet been determined for vineyards in the South Western Cape. This study was initiated to meet this need.
The study was conducted in a hedge-trellised vineyard of Vitis vinifera L. cv Merlot with north east – south west row direction. Thirty experimental sites, each consisting of 14 vines, were identified as being exposed to wind or sheltered based on hand-held anemometer readings during the 2001/2002 season. Four stationary anemometers were strategically positioned between the thirty sites. Stomatal conductance and leaf temperature were measured with a PP systems porometer. Vegetative and yield measurements were performed during the 2002/2003 season. The t-test of equal variance was used to determine significant differences in measured parameters between exposed and sheltered grapevines.
Stomatal conductance and leaf area were significantly reduced by exposure to wind. This was associated with a significant reduction in the leaf area of primary shoots, related to shorter shoots, but a significant augmentation of secondary shoot leaf number and area. The number of bunches per vine and yield were also reduced for exposed vines. The berry potassium content was significantly increased for exposed grapevines.
This demonstrates that exposure to wind can result in significant within-vineyard, and potentially between-vineyard, variability in grapevine physiology, vegetative growth, yield and berry composition, with implications for wine style and quality.

Searching for the sweet spot: a focus on wine dealcoholization

It is well known that the vinification of grapes at full maturation can produce rich, full-bodied wines,
with intense and complex flavour profiles. However, the juice obtained from such grapes may have very
high sugar concentration, resulting in wines with an excessive concentration of ethanol. In addition, the decoupling between technological maturity and phenolic/aromatic one due to global warming, exacerbates this problem in some wine-growing regions. In parallel with the increase of the mean alcohol content of wines on the market, also the demand for reduced alcohol beverages has increased in recent years, mainly as a result of health and social concerns about the risks related to the consumption of alcohol.