Terroir 2012 banner
IVES 9 IVES Conference Series 9 Viticultural practices: past, present and future

Viticultural practices: past, present and future

Abstract

Practices in viticulture have greatly evolved in the last five decades. There were three objectives: improvement in the quality of the products, reduction in the production costs through mechanization, and protection of the environment. In terms of soil management, the combination of different techniques such as soil tillage, chemical weeding and cover-cropping, allowed to reach these three objectives in most cases. Insuring an adequate nitrogen supply to the grapevine was proved to play a key role, since nitrogen deficiency could impair the wine quality. The role of integrated water supply was pointed out, since moderate water restriction was favourable for the wine quality. In terms of vine training, a special interest was given to the winter pruning, keeping in mind the respect for the sap flows and trying to limit the expansion of the wood diseases, since the entirely mechanical pruning was rather inconclusive. Thresholds of leaf/fruit ratios were established and the canopy management during the summer such as leaf removal and shoot tipping were adapted accordingly. The objective was also to minimise the risk of diseases. The control of the yield has become one of the main concerns in viticulture. Although cluster thinning before maturation used to be unimaginable, it is today a common practice in all the vineyards concerned about wine quality and vine longevity. The concept of sustainability will go on influencing the evolution of the practices in viticulture.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

François MURISIER, Vivian ZUFFEREY, Jean-Laurent SPRING

Station de recherche Agroscope Changins-Wädenswil ACW, CH-1260 Nyon

Contact the author

Keywords

soil and water management, vine management, yield, quality

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Impact of grapevine rootstock genotypes on nitrogen status of the scion and phenolic composition in Pinot noir berries and wine

Context and purpose of the study. Nitrogen (N) limitation enhances the production of phenolic compounds in grapes due to the downregulation of the flavonoid biosynthesis pathway.

Mechanization of pre-flowering leaf removal under the temperate-climate conditions of Switzerland

Grapevine leaf removal (LR) in the cluster area is typically done between fruit set and cluster closure to create an unfavorable microclimate for fungal diseases, such as Botrytis cinerea and powdery mildew. Grape growers are now turning their attention to pre-flowering LR, which has additional benefits under certain conditions. When applied before flowering, LR strongly affects fruit set and thus the number of berries per cluster. It is therefore a good yield control tool, replacing time-consuming manual cluster thinning (Poni et al. 2006). It also improves berry structure, that is, skin thickness, skin-to-pulp ratio, and berry composition (total soluble solids, titratable acidity, and polyphenols) (Palliotti et al. 2012; Komm and Moyer 2015). By exacerbating competition for assimilates between reproductive and vegetative organs, pre-flowering LR also poses some risks. Excessive yield loss at the same year’s harvest due to a too low fruit set rate is the main concern: intensive pre-flowering LR (100% of the cluster area) can induce up to 50% yield loss in potted vines (Poni et al. 2005). Other parameters, such as cool climatic conditions during flowering, also affect fruit set rate and make it difficult to predict potential yield at harvest. Repeated and overly intensive preflowering LR can have repercussions over time and induce a decline in bud fruiting and plant vigor (Risco et al. 2014).

Evaluation of six red grapevine cultivars inoculated with Neofusicoccum parvum in a “terroir” of La Mancha wine región (Spain)

Aim: Among Botryosphaeriaceae species associated with Botryosphaeria dieback of grapevines, Neofusicoccum parvum is one of the most virulent and fastest wood-colonizing fungi. This study aimed to evaluate the susceptibility of six red grapevine cultivars (“Bobal”, “Monastrell”, “Garnacha Tinta”, “Moravia Agria”, “Tinto Velasco” and “Moribel” to N. parvum, under field conditions.

Estimation of degree brix in grapes by proximal hyperspectral sensing and nanosatellite imagery through the random forest regressor

The assessment of physiological parameters in vineyards can be done by direct measurements or by remote, indirect methods. The latter option frequently yields useful data, and development of methods and techniques that make them possible is worthwhile. One of the parameters most looked for to define the quality status of a vineyard is the degree Brix of its grapes, a quantity usually determined by direct measurement.

Exploring intra-vineyard variability with sensor- and molecular-based approaches 

The application of remote and proximal sensing is a fast and efficient method to monitor grapevine vegetative and physiological parameters and is considered valuable to derive information on associated yield and quality traits in the vineyard. Further details can be obtained by the application of molecular analysis at the gene expression level aiming at elucidating how pathways controlling the formation of different grape quality traits are influenced by spatial variability. This work aims at evaluating intra-vineyard variability in grape composition at harvest and at comparing this with remotely sensed canopy vegetation data and molecular-based approaches.