Terroir 2020 banner
IVES 9 IVES Conference Series 9 Soil monoliths, soil variability and terroir

Soil monoliths, soil variability and terroir

Abstract

Aim: The aim of this work is educating people about soil variability and terroir. Soil monoliths are used to educate the wine industry about how to describe a soil profile, interpret the soil formation processes operating in a particular soil profile and consequently the impact of soil properties on vine growth, fruit quality and wine production. Soil monoliths are a permanent artistic tool for educating, research and management of soil variability.  

Method and Results: Soil profiles have a unique genetic combination of layers resulting from physical, chemical and biological processes in a landscape. Soil monoliths are permanent intact visual artistic examples of the changes in a landscape and reflect the history of soil development in unique locations. Three examples are presented from a property on Western Fleurieu Peninsula South Australia. The property is 40 ha, has average rainfall 500 mm, no water supply and elevation ranging from 80 m to 140 m above sea level. It is proposed to establish a portion of the property to bush vines.  Soil monoliths and one open soil pit show the key soil types.  

Soil 1 consists of 40 cm sand over massive yellow-brown sandy clay (Sodosol – Australian Soil Classification).  Soil 2 consists of sandy clay loam over red structured clay mixed with soil carbonate (calcic Red Chromosol – Australian Soil Classification).  Soil 3 consists of dark sandy clay loam over soil carbonate and calcareous weathered shale (Calcarosol – Australian Soil Classification). Planting of bush vines is being considered for Soil 2. This soil is at 90-100 m elevation above sea level with a north-west aspect. There is no water supply and the vines will need to be established dry grown. Readily available water holding capacity (RAW) for the soil is 45 mm and rootzone 60 cm.  This site has a friable angular blocky structured B horizon allow water and vine root penetration. There is no saline soil or major soil carbonate limitation that occurs with Soil 1 and Soil 3 respectively.     

Conclusions: 

Soil monoliths are a permanent intact section of soil that can be used for education, artistic display, research and management of soil changes over time. They can be collected from all parts of a landscape to show soil variability and terroir.

Significance and Impact of the Study: Soil profile characterisation is essential to all forms of agriculture and horticulture.  Understanding how soil variability impacts on vine root growth, fruit quality and wine production is the essence of Terroir.  Soil monoliths are a permanent, intact representation of soil variability and are useful for education, research and management of soil.  They are artistic and can convey the importance of soil properties in a visual, tactile manner.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Geoff Kew1*

1Kew Wetherby Soil Survey Pty Ltd, Second Valley, South Australia, Australia, 5204

Contact the author

Keywords

Soil monolith, soil variability, soil profile description, soil horizon, field hand texture, soil structure

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Lactic acid bacteria: A possible aid to the remediation of smoke taint?

With climate change, the occurrence of wildfires has increased in several viticultural regions of the world. Subsequently, smoke taint has become a major issue, threatening the sustainability of the wine industry.

Exploring the presence of oligopeptides in wines into identify possible compounds with umami or kokumi properties

Umami is defined as a pleasant and savory taste derived from glutamate, inosinate and guanylate, which are naturally present in meat, fish, vegetables and dairy products. The term “kokumi” refers to a complex flavour sensation, characterized by thickness, fullness and continuity.

The key role of vineyard parcel in modifying flavor compounds of Cabernet Sauvignon grapes

To produce premium wines in a specific region is the goal of local oenologists. This study aimed to investigate the influence of soil properties on the flavoromics of Cabernet Sauvignon grapes to provide a better insight into single-vineyard wines. Six commercial Cabernet Sauvignon vineyards were selected in the Manas region to collect berries at three harvest ripeness in three seasons (2019–2021). The six vineyards had little difference in mesoclimate conditions while varying greatly in soil composition.

Effect of foliar application of urea and nano-urea on the cell wall of Monastrell grape skins

The foliar application of urea has been shown to be able to satisfy the specific nutritional needs of the vine as well as to increase the nitrogen composition of the must. On the other hand, the use of nanotechnology could be of great interest in viticulture as it would help to slow down the release of urea and protect it against possible degradation. Several studies indicate that cell wall synthesis and remodeling are affected by nitrogen availability.

Smoke taint: Understanding and addressing the compositional consequences of grapevine exposure to smoke

Climate change has become a major challenge for grape and wine production around the world