Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 Diversity and internationalization of wine grape varieties: Evidence from a revised global database

Diversity and internationalization of wine grape varieties: Evidence from a revised global database

Abstract

Aim: To quantify the extent to which national mixes of wine grape varieties (in terms of vineyard bearing area) have become more or less diversified, and ‘internationalized’, since wine globalization accelerated from the 1990s. 

Method and Results: In addition to bearing area (in hectares), shares and indexes are estimated for each of 53 countries in an updated global database involving 700+ wine regions that account for 99% of the world’s wine grape vineyard area and 1,700+ DNA-distinct prime wine grape varieties and 1350+ synonyms, for 2000, 2010 and 2016. This global database (Anderson and Nelgen, 2020) is a major revision, extension and update of Anderson (2013). Its prime varieties are linked to their country of origin and synonyms are as nominated by Robinson et al. (2012) or otherwise JKI (2019).

Conclusion: 

These results reveal that vignerons’ wine grape varietal choices are narrowing across the world. That is, they are becoming less diversified as many countries converge on the major ‘international’ varieties, especially French ones. This is not inconsistent with the fact that wine consumers are enjoying an ever-wider choice range, thanks to far greater international trade in wine associated with the current wave of globalization. Nor is it inconsistent with strengthening vigneron interest in ‘alternative’ and native varieties in numerous countries, including Italy (D’Agata, 2014) and Australia (Higgs, 2019). That interest stems in part from a desire to diversify their varietal mix to differentiate their offering – including through the terroir-driven use of minor varieties in blends – and to hedge against increasing weather volatility. It just happens that in recent decades the latter centrifugal forces are dominated by the centripetal force of embracing the most popular varieties for ease of marketing and presumably higher profits. Moreover, the quality of the current global mix of varieties is arguably substantially above the average quality of the top half-dozen varieties as of 1990.

Significance and Impact of the Study: The apparent paradox of reduced diversity and greater internationalization in the world’s vineyards is partly explained by major changes in a few national bearing areas. This new database provides many other insights in addition to those highlighted in this paper. For example, it includes for the first time numerous climate variables for each of its 700+ regions, prepared with the assistance of Gregory Jones of Linfield University, Oregon. That allows one to examine the varietal mix in regions whose climate in recent years is similar to what other regions will endure in the decades ahead thanks to on-going climate changes.

DOI:

Publication date: March 23, 2021

Issue: Terroir 2020

Type: Video

Authors

Kym Anderson1* and Signe Nelgen2

1 Wine Economics Research Centre, University of Adelaide, Adelaide, South Australia, 5005, Australia
2 Research Associate, Geisenheim University, Germany 

Contact the author

Keywords

Index of similarity between national and global varietal mixes, index of internationalization of prime varieties

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Upscaling the integrated terroir zoning through digital soil mapping: a case study in the Designation of Origin Campo de Borja

homogeneous zones by intersecting several partial zonings of major factors that influence vineyard growth. Each of them follows specific process from their corresponding disciplines. Soil zoning specifically refers to a Soil Resource Inventory map that has traditionally been generated by conventional soil mapping methods. These methods have shortcomings in reaching fine cartographic and categorical details and involve significant expenses, which undermines their applicability. A new framework named Digital Soil Mapping has introduced quantitative models by statistical techniques to establish soil-landscape relationships and is able to provide intensive scale cartography.

In the present study, a microzoning at 1:10.000 scale is generated from an initial zoning, where the conventional soil map with polytaxic map units is replaced by a new one from digital techniques that disaggregates them. The comparison between the zonings considers a quantitative evaluation of capability for each Homogeneous Terroir Unit by means of the Viticultural Quality Index and its categorization based on its distribution by map. The spatial intersection of both maps gives rise to a confusion matrix in which the flows of class variations after the substitution are assessed.

The results show a five-fold increase in the number of Homogeneous Terroir Units identified and a larger differentiation among them, evidenced by a wider range in the capability index distribution. Both elements are accompanied by an increase in the detection of areas of higher potential within previously undervalued uniform zones.These features are a direct effect of the improvements brought by Digital Soil Mapping techniques and would verify the advantages of their implementation in the Integrated Terroir zoning. Eventually, such new highly detailed terroir units would benefit precision viticulture and sustainable management practices.

MAPPING OF GAS-PHASE CO₂ IN THE HEADSPACE OF CHAMPAGNE GLASSES BY USING AN INFRARED LASER SENSOR UNDER STATIC TASTING CONDITIONS

From the chemical angle, Champagne wines are complex hydro-alcoholic mixtures supersaturated with dissolved carbon dioxide (CO₂). During the pouring process and throughout the several minutes of tasting, the headspace of a champagne glass is progressively invaded by many chemical species, including gas-phase CO₂ in large majority. CO₂ bubbles nucleated in the glass and collapsing at the champagne surface act indeed as a continuous paternoster lift for aromas throughout champagne or sparkling wine tasting [1]. Nevertheless, inhaling a gas space with a concentration of gaseous CO₂ close to 30% and higher triggers a very unpleasant tingling sensation, the so-called “carbonic bite”, which might completely perturb the perception of the wine’s bouquet.

Ten years soil diagnosis in vineyards, with particularly analysis of organic and microbial mass and measuring their evolution

Since 1996, we study the soil in viticulture, specially in the South of France. In the field, we delimit soil units and observe soil profiles and take samples to analyse its physical, mineral, organic and microbial mass composition

Understanding sweetness of dry wines: first evidence of astilbin isomers in red wines and quantitation in a one-century range of vintages

The gustatory balance of wines relies on sweetness, bitterness and sourness. In dry wines, sweetness does not result from the presence of residual sugar as in sweet wines, but is due to other non-volatile compounds. Such taste-active compounds are released during winemaking, by grapes, yeasts or oak wood and belong numerous chemical families [1]. Beyond this diversity, stereochemistry of molecules can also influence their sensory properties [2]. However, the molecular determinants associated with this taste have only been partially elucidated. Astilbin (2R, 3R) was recently reported to contribute to wine sweetness [3]. As its aglycon contains two stereogenic centers, three other stereoisomers may be present: neoisoastilbin (2S, 3R), isoastilbin (2R, 3S), and neoastilbin (2S, 3S). These compounds have already been observed in natural products, but never in wine. This work aimed at assaying their presence for the first time in wines as well as their taste properties.The isomers were synthesized from astilbin and purified by semi-preparative HPLC.

Physical-mechanical berry skin traits as additional indicators of resistance to botrytis bunch rot and grape sunburn

Climate change increasingly leads to altered growing conditions in viticulture, such as heat stress, drought or high infection pressure favoring pathogen infection.