Grape texture characteristics are linked to one major qtl

Abstract

AIM: Berry texture and berry skin mechanical properties have high agronomic importance, related to quality and marketing requirements of wine, table and raisin grapes. Despite the efforts already made to detect molecular markers and candidate genes associated with berry texture, different QTLs were proposed until now, showing low contribution rates to the trait, likely due to difficulty in phenotyping. Searching for QTLs linked to berry texture, an F1 population of 154 individuals and their parents (‘Raboso Veronese’ and ‘Sultanina’) were used in this study.

METHODS: Density sorting by flotation was applied to reduce sample variability. One density class was selected achieving berries with a similar ripening stage. Mechanical properties were measured and normalized on berry diameter, surface, and volume. Hundred and ninety SSR molecular markers were used to produce a genetic map using JoinMap. MapQTL was applied searching for QTLs associated with berry texture traits. VviAGL11 expression profiling and co-expression analysis during grape ripening was evaluated using available transcriptomic datasets.

RESULTS: A major QTL was found on LG 18, with high LOD scores (from 25.07 to 31.92) and high phenotypic variance explained (from 53.2 to 63.5%) for all measured texture traits. Surprisingly, this major QTL showed association with SSR markers linked to VviAGL11, the main gene leading to stenospermocarpy. Data available on VviAGL11 expression and co-expression profiling during grape ripening strongly suggested that this gene may act on the traits of a ripe berry through the activation of some target genes involved in lipid and hormone metabolism, transport and in gene expression regulation.

CONCLUSIONS

Previous studies showed how difficult is determining the genetic control of berry texture. Our results clearly underline the major role played by a QTL located on LG18 and characterized by the presence of the well-known MADS-box gene VviAGL11.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Manna Crespan

CREA Research Centre of Viticulture and Enology, Conegliano, Italy,Daniele Migliaro, CREA Research Centre of Viticulture and Enology, Conegliano, Italy Silvia Vezzulli, Fondazione Edmund Mach, S. Michele a/Adige, Trento, Italy Sara Zenoni, University of Verona, Italy Giovanni Battista Tornielli, University of Verona, Italy Simone Giacosa, University of Torino, Italy Maria Alessandra Paissoni, University of Torino, Italy Susana Río Segade, University of Torino, Italy Luca Rolle, University of Torino, Italy

Contact the author

Keywords

Vitis vinifera L., fruit quality, flotation, lg18, vviagl11, mads box genes

Citation

Related articles…

Prediction of sauvignon blanc quality gradings with static headspace−gas chromatography−ion mobility spectrometry (SHS−GC−IMS) and machine learning

The main goal of the current study is the development of a cost-effective and easy-to-use method suitable for use in the laboratory of commercial wineries to analyze wine aroma. Additionally, this study attempted to establish a prediction model for wine quality gradings based on their aroma, which could reveal the important aroma compounds that correlate well with different grades of perceived quality METHODS: Parameters of the SHS−GC−IMS instrument were first optimized to acquire the most desirable chromatographic resolution and signal intensities. Method stability was then exhibited by repeatability and reproducibility. Subsequently, compound identification was conducted. After method development, a total of 143 end-ferment wine samples of three different quality gradings from vintage 2020 were analyzed with the SHS−GC−IMS instrument. Six machine learning methods were employed to process the results and construct a quality prediction model. Techniques that aim to explain the model to extract useful insights were also applied.

Tracking the origin of Tempranillo Tinto through whole genome resequencing and high-throughput genotyping  

Grapevine cultivars are vegetatively propagated to maintain their varietal characteristics. This process of multiplication leads to spontaneous somatic mutations that can eventually generate a variant phenotype, of potential interest for cultivar improvement and innovation. However, regardless their phenotypic effect, somatic mutations stack in the genome, and they can be used to reveal the origin and dissemination history of ancient cultivars. Here, a stringent somatic variant calling over whole genome resequencing data from 35 ‘Tempranillo Tinto’ clones or old vines from seven Iberian winemaking regions revealed 135 single nucleotide variations (SNVs) shared by some of the clonal lines.

Preliminary results on the effect of different organic mulching on wine polyphenol content

Soil mulching is an interesting strategy to reduce soil evaporation, assist in weed control, improve soil structure and organic content, increase soil water infiltration, and decrease diurnal temperature fluctuations

Progetto di zonazione delle valli di Cembra e dell’Adige. Analisi del comportamento della varietà Pinot nero in ambiente subalpino

Nel 1990 la Cantina LA VIS ha intrapreso un progetto di zonazione dei terreni vitati allo scopo di acquisire le conoscenze scientifiche atte a consentire il miglioramento delle qualità dei prodotti. Tale progetto si è articolato su di una superficie di 2000 ettari ubicati lungo l’asta fluviale del fiume Adige da Trento a Salorno e del torrente Avisio da Lavis a Segonzano.

Utilizing ozone for the management of powdery mildew (Erysiphe necator Schwein.) in vineyards: potential and challenges

Powdery mildew, caused by fungal pathogens, poses a significant threat to grapevines in the DOCa Rioja region. In efforts to improve control strategies while reducing reliance on conventional phytosanitary products, ozone could constitute a potential alternative. However, it has short persistence, thus requiring frequent treatments. This study aimed to assess the suitability of ozone as an active substance for controlling powdery mildew within a phytosanitary strategy aimed at reducing conventional phytosanitary product usage. The strategy integrating ozone with conventional products yielded powdery mildew levels comparable to conventional treatments in both disease incidence and severity.