Macrowine 2021
IVES 9 IVES Conference Series 9 Bioprotective effect of non-Saccharomyces yeasts in wines made without SO2

Bioprotective effect of non-Saccharomyces yeasts in wines made without SO2

Abstract

The sulphur dioxide (SO2) is the most widely used additive in the wine industry because of its preservative action. However, in recent years the number of wineries that produce wines without SO2 has increased significantly because its allergenic character. The production of SO2-free wines may lead to the development of different spoiling microorganisms, which could lead to wine deterioration. One of the strategies suggested to avoid wine spoilage, is the non-Saccharomyces yeast inoculation, which prevent bacteria development. The objective of this work was to evaluate the bioprotective effect of a mixed inoculum of non-Saccharomyces yeasts (Torulaspora delbrueckii and Lachancea thermotolerans 70/30) in two consecutive vintages (2018 and 2019). Three strategies were carried out in triplicate: spontaneous fermentation in sulphited must, spontaneous fermentation in non sulphited must and inoculated fermentation (non-Saccharomyces mixed inoculum) in non sulphited must. In all cases, after 72 hours of fermentation the vats were seeded with a commercial Saccharomyces cerevisiae yeast. The presence in the medium of lactic and acetic bacteria and the chemical composition of the wines were evaluated. The obtained results indicated that the bioprotective effect of non-Saccharomyces yeasts inoculation was determined by the success of the implantation. Only in 2019 assays the inoculum was successfully implanted, and therefore, the bioprotective effect was like the observed for sulphited samples, since it limited the lactic and acetic bacteria population. This inoculation also modulated the physicochemical composition of the resulting wines. However, in 2018 the inoculum was not implanted and differences were not detected, neither in wines composition nor in the detected bacteria.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Rocio Escribano Viana , Mª del Patrocinio Garijo, Rosa López, Pilar Santamaría, Ana Rosa Gutiérrez, Lucía González Arenzana.

ICVV, Instituto de Ciencias de la Vid y el Vino (University of La Rioja, La Rioja Government, CSIC). Finca La Grajera, Ctra. LO-20- salida 13, 26071 Logroño, Spain. ICVV, Instituto de Ciencias de la Vid y el Vino (University of La Rioja, La Rioja Government, CSIC). Finca La Grajera, Ctra. LO-20- salida 13, 26071 Logroño, Spain. ICVV, Instituto de Ciencias de la Vid y el Vino (University of La Rioja, La Rioja Government, CSIC). Finca La Grajera, Ctra. LO-20- salida 13, 26071 Logroño, Spain. ICVV, Instituto de Ciencias de la Vid y el Vino (University of La Rioja, La Rioja Government, CSIC). Finca La Grajera, Ctra. LO-20- salida 13, 26071 Logroño, Spain. ICVV, Instituto de Ciencias de la Vid y el Vino (University of La Rioja, La Rioja Government, CSIC). Finca La Grajera, Ctra. LO-20- salida 13, 26071 Logroño, Spain. ICVV, Instituto de Ciencias de la Vid y el Vino (University of La Rioja, La Rioja Government, CSIC). Finca La Grajera, Ctra. LO-20- salida 13, 26071 Logroño, Spain.

Contact the author

Citation

Related articles…

First characterization of thiol precursors in colombard and gros manseng: comparison of two cultivation practices

AIM: Organic production of wine in the past years has known an important augmentation. This type of cultivation practice switches synthetic phytosanitary product for copper-based protection as fungicide.

Recent observations in wine oxidation

The chemistry of wine oxidation is captured in the reactions between the oxidation products, mostly reactive electrophiles, with other wine constituents. An understanding of both components and their reactions can lead to ideas and techniques to control and mitigate or enhance these reactions to allow for the desired development of the wine. Current investigations are yielding much useful information about oxidation reactions in wine.

Anthropogenic intervention in shaping Terroir in a California Pinot noir vineyard

In many vineyards optimal parcel size exceeds the geospatial complexity that exists in soils and topographic features that influence hydrological properties, sunlight interception and soil depth and texture (available water capacity).

Transforming winemaking waste: grape pomace as a sustainable source of bioactive compounds

Grapevines (Vitis vinifera L.) are plants of great economic importance, with over 80% of grape production dedicated to wine production, yielding more than 258 million hectoliters annually [1].

Determination of target compounds in cava quality using liquid chromatography. Application of chemometric tools in data analysis

According to the Protected Designation of Origin (PDO), Cava is protected in the quality sparkling wines made by the traditional Champenoise method were the wine realize a second fermentation inside the own bottle1. Geographical and human peculiarities of each bottle are the main way for the final quality2. The aim of this study is to find correlations and which target compounds are the most representative of the quality of two different grape varieties, Pinot Noir and Xarel·lo. The quality of these two types of grapes is being studied for each variety by a previous classification of the vineyard made by the company who provided the samples (qualities A,B,C,D, being A the better one and D the worst one). The target compounds studied are organic acids and polyphenols. The methodology for the determination of organic acids is HPLC-UV/vis and for some of them the enzymatic methodology.