Macrowine 2021
IVES 9 IVES Conference Series 9 Screening of soil yeasts with fermentative capacity from the antarctic continent for their application in the wine industry

Screening of soil yeasts with fermentative capacity from the antarctic continent for their application in the wine industry

Abstract

AIM: In the last years, many wineries are increasing experimentation to produce more distinguishable beverages. In this sense, the reduction of the fermentation temperature could be a useful tool because it preserves volatile compounds and prevents wines from browning, particularly in the case of white wines. However, low fermentation temperatures usually produce an early stop in the fermentation. Hence, the employment of new yeast strains able to operate at low temperatures could solve this problem, giving rise to different characteristics in wines. The Antarctic Continent is a crucial source for the isolation of new microorganisms and bioactive metabolites, given the competitive conditions of this environment with low temperatures, scarce carbon sources and high UV radiation. Considering this, the objective of this study was the isolation and characterization of fermentative yeast from the Antarctic Continent with potential for use in the wine industry.

METHODOLOGY: Six soil samples collected in Fildes Bay, west of King George Island and three soil samples from King George Island were processed for yeast isolation. Samples were suspended in sterile water and dilutions of each suspension were inoculated onto yeast medium (YM) agar plates with antibiotics, which were then incubated at 4, 10, and 18 °C until visible colony growth. Colonies with a non-filamentous appearance were selected, which were reseeded on YM agar without antibiotics. Alcohol tolerance was performed using concentrations of 3, 6, or 9% alcohol. Later on, sugar tolerance was analyzed using fructose and glucose in a 1:1 proportion; with 5, 10, 15, 20, or 25% of sugar in the medium. Those isolates with microscopic characteristics of interest were selected to determine fermentative activity in vitro using a simple colorimetric assay with phenol red, as a pH indicator. To differentiate the isolates, and discard replicates, a fingerprinting assay with arbitrary primers was performed. Identification of the isolates was carried out using PCR and ITS region primers with BLAST bioinformatics tools.

RESULTS: Nine soil samples collected from the Antarctica were processed for yeast isolation. We obtained 125 yeasts from the soil samples, with a growth temperature of 10ºC. Overall, 25 yeasts have fermentative activity and are able to tolerate a culture medium with at least 20% glucose and up to 6% of ethanol. The isolates were also characterized by optical microscopy and fingerprinting using PCR with arbitrary primers to discard identical strains and allowed us to discriminate 10 unique strains with fermentative capacity from the 25 isolates. To determine the identity of the isolated yeasts, the amplification and sequence of the 18S RNA was performed.

CONCLUSION:

The Antarctic continent has proven to be a source of fermentative yeasts with high potential for their use in the wine industry.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Laura Navarro, Cristina Úbeda, Mariona Gil i Cortiella, Ana Gutierrez, Gino Corsini, Nancy Calisto

Biomedical Sciences Institute, Health Sciences Faculty, Autonomous University of Chile, Santiago, Chile., Nutrition and Food Sciences Department, Faculty of Pharmacy, University of Seville, Seville, Spain. Applied Chemical Sciences Institute, Autonomous University of Chile, Santiago, Chile. Biomedical Sciences Institute, Health Sciences Faculty, Autonomous University of Chile, Santiago, Chile. Biomedical Sciences Institute, Health Sciences Faculty, Autonomous University of Chile, Santiago, Chile. Chemical engineering department, Faculty of Engineering, Magallanes University, Punta Arenas, Chile. Biomedical Sciences Institute, Health Sciences Faculty, Autonomous University of Chile, Santiago, Chile.

Contact the author

Keywords

antarctic yeast, low temperature fermentation, yeast isolation, yeast characterization

Citation

Related articles…

PIWIs’ variation in drought response under semi-controlled conditions 

Grapevine interspecific hybrids (PIWIs, from German “pilzwiderstandsfähige Rebsorten” meaning fungus tolerant grapevine cultivars), offer a promising alternative to traditional cultivars in many wine regions due to their tolerance to certain fungal diseases. This makes them a potential solution for sustainable wine production, particularly under organic systems. Despite extensive research on certain agronomic traits and susceptibility to biotic diseases, such as powdery and downy mildews, the response of these cultivars to abiotic stressors, such as drought, remains unclear. Our study aims to investigate the eco-physiological traits of two commercial PIWI cultivars, Muscaris and Souvignier gris, at the leaf level to evaluate their response to drought stress.

Soil or geology? And what’s the difference? Some observations from the New World

Observational historical geology seeks to establish the evolutionary history of the surface of Earth. This approach is applicable not only to bedrock, but to the soft material that lies at the surface, the stuff called soil by most people. The geologic perspective provides a view of this material that is quite different from that of soil science, at least as practiced by many in America.

Investigation on harvesting period choices for correct interpretation of experimental results

Happens too often in scientific papers to find the same harvesting period of a cultivar, although the used treatment influence a maturity curve of investigated thesis.
This inevitably leads to wrong conclusions when comparing the treatment effects, since obtained on maturity stages more or less far from those technologically correct.

Regionality in Australian Shiraz: Sensory profiles of wines from six regions and their associations with chemical, geographical and climatic elements

Aim: Regional characters relating to Shiraz in Australia are not well documented. This study aimed to characterize the sensory, chemical and climate profiles of wines from various Australian Shiraz producing regions. 

Impacts of environmental variability and viticultural practices on grapevine behaviour at terroir scales

Climate change poses several challenges for the wine-industry in the 21st century. Adaptation of viticultural and winemaking practices are therefore essential to preserve wine quality and typicity. Given the complex interactions between physical, biological and human factors at terroir scales, studies conducted at these fine scales allow to better define the local environment and its influences on grapevine growth and berry ripening.