Macrowine 2021
IVES 9 IVES Conference Series 9 Desorption of phenolic compounds bound to lees by combining hydrolytic enzymes and ultrasounds

Desorption of phenolic compounds bound to lees by combining hydrolytic enzymes and ultrasounds

Abstract

The final concentration of phenolic compounds in the wines is usually lower than what might be expected given the phenolic concentration measured in grapes. One possible cause of this low concentration is the interactions between the suspended mesocarp and skin cell walls and phenolic compounds during the maceration process of red wine [1]. Most of these aggregates that are formed by these interactions are insoluble and end up precipitating forming, together with the yeast cell walls, the lees. Maceration enzymes have the ability to degrade the polysaccharides that represent the major components of the cell wall, which it is why these enzymes could lead to the release of phenolic compounds previously absorbed by the cell walls. Ultrasound (US) has been used in oenology as a technology to break cell structures through cavitation and facilitates the release of compounds of interest from the cell interior [2,3], and, precisely because of this capacity, US could also promote the desorption of phenolic compounds precipitated with lees.The objective of this work is to determine the capacity of two different techniques, the use of enzymes and/or the application of high power ultrasounds (US) to release those anthocyanins and tannins adsorbed in the lees. Both techniques seek the degradation (enzymes) or disruption (US) of the structures of the cell walls, to facilitate the desorption of the phenolic compounds.The lees from a red wine vinification were recovered, dissolved in a model ethanolic solution and treated, at laboratory scale, with enzymes and/or ultrasounds. Three different commercial enzymes were used: two different pectolytic enzymes and glucanase. The best sonication conditions were previously tested in order to find the optimal treatment conditions. The chromatic characteristics of the model solution and anthocyanins and tannins recovery were analyzed after the treatments. Anthocyanins and tannins were quantified and characterized by liquid chromatography. In addition, the soluble polysaccharides and tannins extracted from the lees after the treatments were analyzed by size exclusion chromatography.The results of this study could be of interest for the valorization of the lees, as a winery byproduct, by recovering the adsorbed compounds but also we add light into possible enological procedures for facilitating and accelerating the aging on lees, through the liberation, first of all, of polysaccharides from the lees but also those phenolic compounds lost during vinification.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Andrea  Osete Alcaraz

Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100 Murcia, Spain.,Ana Belen, BAUTISTA-ORTÍN, Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100 Murcia, Spain.  Encarna, GÓMEZ-PLAZA, Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100 Murcia, Spain.  Paula, PÉREZ-PORRAS, Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100 Murcia, Spain.  Raquel, SANCHEZ-BERNAL, Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100 Murcia, Spain.

Contact the author

Keywords

anthocyanins, tannins, ultrasound, enzymes, lees

Citation

Related articles…

An alternative for reducing calcium in wine and lowering the risk of insoluble salt formation

Wine minerals, including calcium, derive mainly from grape berry extraction, but they could also arise from winemaking additives, processing aids, and other sources.

Mitigation of retronasal smoke flavor carryover in the sensory analysis of smoke affected wines

With the steady rise in wildfire occurrence in wine regions around the world, there are quality issues beginning to face the wine industry. These fires produce clouds of smoke which have the ability to carry organic molecules across vast distances that can be absorbed by grapes. When these compounds make their way into the final wine, unpleasant smokey and burnt flavors are present, along with a lasting ashy finish. Along with the volatile compounds carried by smoke, once incorporated into the fruit these compounds become bound to sugars, forming glycosidic compounds.

Influence of different Lachancea thermotolerans strains in wine acidity

Wine acidity is a parameter of great importance that influences different quality factors of the product such as biological stability or organoleptic characteristics. In the current context of climate change, which gives rise to wines with higher levels of ethanol and lower acidity, the biological acidification with yeast species such as Lachancea thermotolerans could be a solution.
In this work, the effect of the inoculation of different L. thermotolerans on the acidity of wine was studied.

Green Vineyards: skills development for wine industry personnel: responding to the challenges of climate change

A fair and sustainable society, with a modern, resource-efficient and competitive economy cannot be achieved without a workforce to support it.

Impact of sulfur compounds to the antioxidant stability of white wines

The chemical mechanisms involved in oxidation/reduction potential of wine during winemaking and aging are affecting its color, aroma and taste. Chemical oxidation is one of the major causes of development of off-flavors during ageing1. Thus, the chemical changes in wine during storage should be controlled to ensure the sensory quality of the product and avoid consumer rejection that will compromise the economic value of the product. The 1-hydroxyethyl radical has been recognized as the key radical intermediate in the oxidative reactions in wine2. Based on the kinetic study of POBN-1-hydroxyethyl spin adduct formation in wines initiated via the Fenton reaction, a novel tool was recently developed in our laboratory to quantify the resistance of wines against oxidation3.