Macrowine 2021
IVES 9 IVES Conference Series 9 Influence of must fining on oxygen consumption rate, oxidation susceptibility and electrochemical characteristics of different white grape musts

Influence of must fining on oxygen consumption rate, oxidation susceptibility and electrochemical characteristics of different white grape musts

Abstract

AIM: Pre-fermentative fining is one of the central steps of white wine production. Mainly aiming at reducing the levels of suspended solids, juice fining can also assist in reducing the content of oxidizable phenolics and therefore the susceptibility of juice to oxidation. There is a large variety of fining agents available on the market, many of which have been introduced in recent years in response to specific dietary requirements. The aim of this work is to characterize different fining agents for their ability to reduce oxidation susceptibility of must of different white grape varieties.

METHODS: Musts of Pinot grigio, Garganega and Chardonnay were produced in the laboratory and submitted to different fining treatments by means of casein, PVPP, potato protein, pea protein, or combinations of potato protein and PVPP. All fining also included pectolitic enzymes. Following cold settling, clear juice was racked and submitted to chemical and electrochemical (linear sweep voltammetry, LSV) analyses, as well as to cycles of controlled oxygen consumption to assess oxidative behaviors. A control treatment consisting of cold settling only with pectolitic enzymes was used as control.

RESULTS: Not all fining treatments were able to impact juice oxidative behavior. Common fining agents such as casein showed marginal impact on oxygen consumption rates, content of oxidizable phenolics and browning susceptibility. Conversely, pea protein, alone or in combination with PVPP, showed great capacity to reduce the content of oxidizable phenolics and the ability of the must to undergo oxidative reactions. LSV could be used to effectively monitor the removal of oxidizable phenolics during the treatment.

CONCLUSIONS: 

This work illustrates the importance of the type of fining agent in the context of managing must and wine oxidation susceptibility. It also highlights the potential of a simple electrochemical technique such as LSV to monitor the effectiveness of fining towards oxidizable phenolics. ACKNOWLEDGMENTS: The present work was financially supported by Biolaffort

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Maurizio Ugliano

University of Verona, Italy,Virginie, MOINE, Biolaffort, France Arnaud, MASSOT, Biolaffort, France

Contact the author

Keywords

fining, vegetable proteins, oxidation, lienar sweep voltammetry

Citation

Related articles…

Mathematical models of the dynamics of fermentation of wine yeasts under the influence of vitamins

Biomass accumulation in yeast has been studied in this work in terms of their role in fermentation processes. So, biotin is involved in many reactions and nitrogen metabolism disorders

Développement de l’appareil végétatif et maturation du raisin sur quatre sols de Pomerol en 1995

The Pomerol vineyard, located 35 km east of Bordeaux, covers around 800 ha on the left bank of the Isle. There is a system of fluvial terraces with more or less coarse gravel and pebble spreading, resting on a Tertiary substratum ranging from the Middle to Upper Eocene to the Lower Oligocene (Dubreuilh, 1993). This interweaving of terraces of varying thickness results in a brutal superposition of differentiated materials which give rise to various types of soil. Several site studies in this sector of the Libounais show significant morphological and analytical differences from one point to another (Guilloux et al ., 1978; Duteau, 1982; Van Leeuwen et al.., 1989). The distribution of the soils of the Pomerol vineyard was studied and resulted in a cartography at 1/25000th (Merouge, 1995).

Functional characterization of grapevine MLO genes to define their roles in Powdery mildew susceptibility by CRISPR/Cas9 genome editing

Successful powdery mildew (PM) infection in plants relies on Mildew Resistance Locus O (MLO) genes, which encode susceptibility factors essential for fungal penetration. In Arabidopsis, loss-of-function mutations in three clade-V MLOs, AtMLO2, 6, and 12 confer complete resistance to PM infection. Since then, efforts are on to discover MLO genes contributing to PM susceptibility in many species to introduce mlo-based PM-resistance. Earlier studies in tomato and grapevine, using the RNAi approach, attributed PM susceptibility to SlMLO1, 5, and 8 and VvMLO3, 13, and 17, respectively indicating likely functional redundancy among MLOs.

An infrared laser sensor to characterize the gaseous headspace of champagne glasses under static and swirling conditions

Right after the pouring of champagne in a glass, thousands of rising and bursting bubbles convey gas-phase CO2 and volatile organic compounds in the headspace above the champagne surface, thus progressively modifying the gaseous chemical space perceived by the consumer [1]

Impact of canopy management on thiol precursors in white grapes: a six-year field study

The mechanisms behind thiol precursor accumulation in grapes remain incompletely understood, nor are the ways in which they can be improved by agronomic practices. A six-year field trial studied the physiological response of the Swiss white cultivar Vitis vinifera Arvine, rich in varietal thiols and precursors, to canopy management, i.e. leaf removal and canopy height.. Five treatments were set up in a randomized block design to assess the impacts of 1) pre-flowering LR (i.e. pre-flowering or full-flowering stages) and 2) compensating for the leaf area removed in the cluster zone by increasing the trimming height (i.e. 100 or 150 cm canopy height), compared with a non-defoliated control treatment.
Intensive pre-flowering LR severely reduced yield potential (–47% on average) and reduced the concentration of 3-mercaptohexanol precursors (P-3MH) in the must (–21%; p-value < 0.10).