Aromatic profile of chardonnay – clone 809: from berry to sparkling wine in an altitude vineyard

Abstract

AIM: Wine consumption is linked to the aromatic profile, consumer acceptance, and reflects the viticultural and oenological practices applied, together with the study related to clones is a way to evaluate the adaptation, production, and search for differentiated aromatic characteristics. Thus, the aromatic profile of Chardonnay cultivar clone 809 was evaluated, due to its moscato character, in order to verify its potential for sparkling wines in the southeast region of Minas Gerais (Brazil) in comparison to clone 76 that the plantation is predominant in the region.

METHODS: The study was conducted in a 6-year-old experimental altitude vineyard of EPAMIG located at Caldas city, and vinification was performed according to the traditional method, Champenoise (18 months in sur lie). Grapes were harvested in the maturity stage for sparkling wine production and in both fermentation was applied Saccharomyces bayanus yeast. The free volatile compounds were identified by HS-SPME/GC-MS in two consecutive seasons, 2017 and 2018, and in the clones 76 and 809 of Chardonnay cultivar grafted onto 1103 Paulsen and trained on a vertical shoot positioned trellis.

RESULTS: It was pointed out between 54 and 90 compounds in all matrices (berry, must, base wine and sparkling wine), and the number of monoterpenoid compounds found in clone 809 was slightly more than double that found in clone 76 (31 compounds against 14), as was the abundance of these compounds in all of them. The multivariate analysis was applied for the base and sparkling wines evaluation for both clones and seasons, showing that the process steps differentiate in PC 1 (42.3%, base wine x sparkling wine), PC2 discriminated the clones (16.8%, clone 809 x clone 76), and the third component (15.1%) distinguished the base wines in seasons and the sparkling wines were grouped together conforming to the clone. Clone 809 was discriminated according to the following compounds: α-terpineol, linalool, ß-mircene, hotrienol, nerol oxide and limonene.

CONCLUSIONS

According to the multivariate analysis, the sparkling wines were grouped by their clones, suggesting that, regardless of the vintage, the sparkling wine, showed significant influence derived from clone genetics, and that according to the compounds confers floral, fruity and sweet aromas to sparkling wines elaborated with Chardonnay grape berries – clone 809. Although the data showed this difference between Chardonnay clones, the sensory analysis would be an additional tool to confirm the Moscato character and to guide further experiments.

DOI:

Publication date: September 15, 2021

Issue: Macrowine 2021

Type: Article

Authors

Naíssa, Prévide Bernardo

Food and Experimental Nutrition Department, School of Pharmaceutical Sciences and Food Research Center, University of São Paulo, São Paulo, Brazil ,Aline, de OLIVEIRA – Food and Experimental Nutrition Department, School of Pharmaceutical Sciences and Food Research Center, University of São Paulo, São Paulo, Brazil  Renata, Vieira da MOTA – Agricultural Research Company of Minas Gerais, Experimental Farm of Caldas, Grape and Wine Technological Center, Caldas, Minas Gerais, Brazil  Francisco Mickael, de Medeiros CÂMARA – Agricultural Research Company of Minas Gerais, Experimental Farm of Caldas, Grape and Wine Technological Center, Caldas, Minas Gerais, Brazil  Isabela, PEREGRINO – Agricultural Research Company of Minas Gerais, Experimental Farm of Caldas, Grape and Wine Technological Center, Caldas, Minas Gerais, Brazil  Murillo, de A. REGINA – Agricultural Research Company of Minas Gerais, Experimental Farm of Caldas, Grape and Wine Technological Center, Caldas, Minas Gerais, Brazil  Eduardo, PURGATTO – Food and Experimental Nutrition Department, School of Pharmaceutical Sciences and Food Research Center, University of São Paulo, São Paulo, Brazil

Contact the author

Keywords

vitis vinifera, moscato character, food analysis, grape, pca analysis, hs-spme, gc-ms, flavour

Citation

Related articles…

Ageing of sweet wines: oxygen evolution according to bung and barrel type

Barrel ageing is a crucial step in the wine process because it allows many changes to the wine as enrichment, colour stabilization, clarification and also a slow oxygenation. Effects of the oak barrel have to be known to prevent oxidation of the wine. The type of bung used during ageing is also a parameter to consider. Ageing sweet wines in barrel is a real challenge. These wines may need some oxygen at the beginning of ageing but they should be protected at the end of their maturation, to avoid oxidation.

The use of cation exchange resins for wine acidity adjustment: Optimization of the process and the effects on tartrate formation and oxidative stability

Acidity adjustments are key to microbial control, sensory quality and wine longevity. Acidification with cation exchange resins -in acid cycle- offers the possibility to reduce the pH by exchanging wine cations, such as potassium (K+), for hydrogen ions (H+). During the exchange process, the removal of potassium and calcium ions contributes to limiting the formation of tartrate salts, thus offering an alternative solution to conventional methods for tartrate stability. Moreover, the reduction of wine pH and the removal of metals catalyzers (e.g. iron) could positively impact the wine’s oxidative stability. Therefore, the aims of this work were (a) to optimize the ion exchange process by testing different volumes and concentrations of sulfuric acid (H2SO4) during the acid cycle, (b) evaluate the effects of the ion exchange process on the formation of tartrate salts, and (c) analyze the oxidative stability of the treated wines.

Role of anthocyanins and copigmentation in flavonol solubility in red wines 

Over the last years, due to climate change, several red wines, such as the Sangiovese wines, have been often subjected to loss of clarity due to the formation of deposits of fine needle-shaped crystals. This phenomenon turned out to be due to an excess of quercetin (Q) and its glycosides (Q-Gs) in wines. These compounds are synthesized to a large extent when grapes are excessively exposed to UVB radiations in vineyards[1]. Unfortunately, it is not easy to predict the degree of Q precipitation because its solubility strongly depends on the wine and matrix composition[2].

THE EFFECT OF COPPER ON THE PRODUCTION OF VARIETAL THIOLS DURING THE ALCOHOLIC FERMENTATION OF COLOMBARD AND GROS MANSENG GRAPE JUICES

Nowadays, the rapid growth of vineyards with organic practices and the use of copper as the only fun-gicide against downy mildew raises again the question of the effect of copper on varietal thiols in wine, especially 3-sulfanylhexan-1-ol (3SH) and its acetate (3SHA). A few decades ago, several works indicated that the use of copper in the vineyard had a negative effect on the content of varietal thiols in Sauvignon blanc wines [1, 2]. However, these studies only considered the concentration of the reduced form (RSH) of varietal thiols, without quantifying the oxidised ones. For this purpose, we proposed to monitor both reduced and oxidised forms of varietal thiols in wine under copper stress during alcoholic fermentation to have a more complete picture of the biological and chemical mechanisms.