Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Chemical diversity of 'special' wine styles: fortified wines, passito style, botrytized and ice wines, orange wines, sparkling wines 9 What is the best time to harvest grapes destined for withering? Ripeness and dehydration length affect phenolic composition of Nebbiolo grapes

What is the best time to harvest grapes destined for withering? Ripeness and dehydration length affect phenolic composition of Nebbiolo grapes

Abstract

AIM: Sfursat di Valtellina is a DOCG reinforced wine produced in Valtellina from partially withered red grapes of Vitis vinifera L. cv. Nebbiolo. The grape ripeness degree and the dehydration process strongly influence the physicochemical characteristics of grapes [1, 2, 3]. In particular, grape skin and seeds contain several classes of phenolic compounds strictly associated with red wine quality, which are significantly affected by these factors [4]. The aim of this research is to assess the combined influence of different ripeness levels and withering rates on the standard chemical composition and phenolic profile of winegrape in order to provide new insights and approaches to the management of withering, searching for the valorization of grape potentialities.

METHODS: During a two-year study (vintages 2019 and 2020) three binomials have been tested: early harvest/long withering (EL), medium-term harvest/medium-term withering (MM) and late harvest/short withering (LS). Grape samples of cv. Nebbiolo from two vineyards at different locations (Valtellina upper and lower valley) were harvested and placed into a typical ‘fruttaio’ dehydration room, following the wine type designation guidelines. Grape must composition, mechanical parameters and extractable phenolic profiles (total polyphenols, total anthocyanins, total flavonoids and methylcellulose tannin assay) of grape skins and seeds were studied before and after the withering process.

RESULTS: At the end of withering, EL thesis showed the highest values of sugars and acidity, and the lowest pH. The content of total polyphenols, flavonoids, and tannins in seeds showed a decreasing trend by leaving the grapes on the plant longer, whereas their impact increased considerably after withering with respect to fresh samples, due to berry dehydration. Instead, the skin phenolic compounds were less influenced by harvest period, but their concentrations on grape weight increased after withering. Skin extractable anthocyanins experienced a distinct trend for the two vineyards studied: their concentration increased in withered samples from the upper-valley vineyard and decreased in those from the lower-valley. The grapes mechanical properties may have influenced this aspect, as previously demonstrated [5]. Finally, the differences highlighted between the three binomials studied were more noticeable in vintage 2019 rather than in 2020, probably due to the higher rainfall in the final stage of grape ripening in vintage 2020.

CONCLUSIONS:

In this research, the combined effect of ripeness degree and withering process length have been studied. The results obtained shows that these two variables can be modulated according to the desired oenological objective. In general, early/medium harvest and long/medium withering gave the best results, particularly for seeds polyphenols, although the vineyard location and the weather conditions of the year influenced the withered grape phenolic characteristics.

DOI:

Publication date: September 16, 2021

Issue: Macrowine 2021

Type: Article

Authors

Giulia Scalzini

University of Torino, Italy,Maria Alessandra PAISSONI, University of Torino, Italy Simone GIACOSA, University of Torino, Italy Danilo DROCCO, Cantina Nino Negri, Italy Aldo RAINOLDI, Casa Vinicola Aldo Rainoldi, Italy Diego ORTIZ JACOB, University of Torino, Italy Giovanni BITELLI, University of Torino, Italy Susana RÍO SEGADE, University of Torino, Italy Vincenzo GERBI, University of Torino, Italy Luca ROLLE, University of Torino, Italy

Contact the author

Keywords

postharvest withered grapes, phenolic compounds, withering process, sfursat di valtellina, sforzato, reinforced wines, special wines

Citation

Related articles…

Effect of bleaching with different agents on protein hydrolysate characteristics

High temperatures can reduce the phenolic content of grapes, especially anthocyanins and copigments involved in colour stabilisation of red wines [1]. This could make it difficult to maintain stable colour during storage [2].

The potential of new selection and indigenous grape varieties for sparkling wine production

In the context of climate change, it is essential to provide producers with alternatives based on local grape varieties capable of meeting modern quality and sustainability requirements.

A comprehensive ecological study of grapevine sensitivity to temperature; how terroir will shift under climate change

Fossil fuel combustion continues to drive increases in atmospheric carbon dioxide, consequently elevating the global annual mean temperature and specifically increasing the growing season temperatures in many of the world’s most important wine growing regions (IPCC 2014; Jones et al 2005). Grapes are sensitive to changes in growing season temperatures, and past models have shown a direct link between warming temperatures and earlier harvest dates (Cook and Wolkovich 2016). Globally, there have been shifts of 1-2 weeks for wine growing regions (Wolkovich et al 2017 and references within). The phenological shifts resulting from growing season temperature increases are documented internationally, and models predicting phenology using temperature are becoming more precise (Parker et al 2011).

The vineyard landscape of the oasis norte of Mendoza Argentina. Economic assessment of the recreational use through contingent valuation method

Oasis Norte’s vineyards of Mendoza Argentina have shaped along their existence, a characteristic landscape; this area is close to Mendoza City

Second pruning as a strategy to delay maturation in cv. ‘Touriga nacional’ in the Portuguese Douro region

The advance in maturation of wine grapes is an important climate change risk related effect that could affect warm regions like Portuguese Douro Wine Region. Indeed, the climate analysis over the past years registered a decrease in the precipitation, significant higher average temperatures, and a more frequent occurrence of extreme weather events, including heat waves. In these conditions the length from anthesis until maturation is shortened and the uncoupling of technical and phenolic maturity results in berries with higher sugar concentration (and lower acidity), but lower anthocyanins, tannins, and total phenolic concentration, which produce unbalanced wines.
In this work, an innovative strategy of crop forcing, based on forcing vine regrowth after a second pruning of green shoots, was tested, aimed at delaying ripening until the temperature becomes lower and, therefore, preventing acidity loss and increasing anthocyanin-to-sugar ratio. The experiments were conducted in 2019 and 2020 in a commercial vineyard of ‘Touriga Nacional’ located in the Douro Region. Crop forcing was conducted 15 (CF1) to 30 (CF2) days after fruit set. Vines pruned with conventional methods were used as control (CF0). Results confirmed that fruit ripening was shifted from the hot season (August/September), until a cooler period (October through early-November). At harvest, grapevine berries from CF1 and CF2 presented lower pH and higher acidity, than control, with no significant differences in colour intensity and phenolic levels composition. Sugar content was lower in CF2-treated vines in both seasons. However, in CF-treated vines the number and size of clusters were significantly lower (up to 88% reduction) than in control plants. A metabolomics analysis of mature berries from CF-treated vines and control is underway. Crop forcing was indeed effective in producing a more balance berry composition but severely reduced grapevine yield,