Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Chemical diversity of 'special' wine styles: fortified wines, passito style, botrytized and ice wines, orange wines, sparkling wines 9 What is the best time to harvest grapes destined for withering? Ripeness and dehydration length affect phenolic composition of Nebbiolo grapes

What is the best time to harvest grapes destined for withering? Ripeness and dehydration length affect phenolic composition of Nebbiolo grapes

Abstract

AIM: Sfursat di Valtellina is a DOCG reinforced wine produced in Valtellina from partially withered red grapes of Vitis vinifera L. cv. Nebbiolo. The grape ripeness degree and the dehydration process strongly influence the physicochemical characteristics of grapes [1, 2, 3]. In particular, grape skin and seeds contain several classes of phenolic compounds strictly associated with red wine quality, which are significantly affected by these factors [4]. The aim of this research is to assess the combined influence of different ripeness levels and withering rates on the standard chemical composition and phenolic profile of winegrape in order to provide new insights and approaches to the management of withering, searching for the valorization of grape potentialities.

METHODS: During a two-year study (vintages 2019 and 2020) three binomials have been tested: early harvest/long withering (EL), medium-term harvest/medium-term withering (MM) and late harvest/short withering (LS). Grape samples of cv. Nebbiolo from two vineyards at different locations (Valtellina upper and lower valley) were harvested and placed into a typical ‘fruttaio’ dehydration room, following the wine type designation guidelines. Grape must composition, mechanical parameters and extractable phenolic profiles (total polyphenols, total anthocyanins, total flavonoids and methylcellulose tannin assay) of grape skins and seeds were studied before and after the withering process.

RESULTS: At the end of withering, EL thesis showed the highest values of sugars and acidity, and the lowest pH. The content of total polyphenols, flavonoids, and tannins in seeds showed a decreasing trend by leaving the grapes on the plant longer, whereas their impact increased considerably after withering with respect to fresh samples, due to berry dehydration. Instead, the skin phenolic compounds were less influenced by harvest period, but their concentrations on grape weight increased after withering. Skin extractable anthocyanins experienced a distinct trend for the two vineyards studied: their concentration increased in withered samples from the upper-valley vineyard and decreased in those from the lower-valley. The grapes mechanical properties may have influenced this aspect, as previously demonstrated [5]. Finally, the differences highlighted between the three binomials studied were more noticeable in vintage 2019 rather than in 2020, probably due to the higher rainfall in the final stage of grape ripening in vintage 2020.

CONCLUSIONS:

In this research, the combined effect of ripeness degree and withering process length have been studied. The results obtained shows that these two variables can be modulated according to the desired oenological objective. In general, early/medium harvest and long/medium withering gave the best results, particularly for seeds polyphenols, although the vineyard location and the weather conditions of the year influenced the withered grape phenolic characteristics.

DOI:

Publication date: September 16, 2021

Issue: Macrowine 2021

Type: Article

Authors

Giulia Scalzini

University of Torino, Italy,Maria Alessandra PAISSONI, University of Torino, Italy Simone GIACOSA, University of Torino, Italy Danilo DROCCO, Cantina Nino Negri, Italy Aldo RAINOLDI, Casa Vinicola Aldo Rainoldi, Italy Diego ORTIZ JACOB, University of Torino, Italy Giovanni BITELLI, University of Torino, Italy Susana RÍO SEGADE, University of Torino, Italy Vincenzo GERBI, University of Torino, Italy Luca ROLLE, University of Torino, Italy

Contact the author

Keywords

postharvest withered grapes, phenolic compounds, withering process, sfursat di valtellina, sforzato, reinforced wines, special wines

Citation

Related articles…

Inactivated yeasts: a case study for the future of precision enology

Yeasts serve as highly versatile tools in oenology. They do more than just perform alcoholic fermentation. Nowadays, yeasts from various species, naturally present in grapes, are selected for specific non-fermentative applications. For example, the use of selected non-saccharomyces at the early stage of winemaking has become a common practice to limit the growth of unwanted microorganisms. When inactivated, yeasts can be fractionated into soluble and insoluble fractions providing a wide range of benefits related to structural components or specific metabolites.

Metabolic response of vitis vinifera and interspecific vitis sp. varieties to heat stress, water deficit and combined stress, using a metabolomic approach

As greenhouse gas emissions continue to rise, climate projections indicate an increased likelihood of heat waves and drier conditions in canada. these changes pose significant challenges to grapevine cultivation, particularly during critical growth stages such as new plantings. interspecific hybrid grape varieties, developed through different breeding programs that combine vitis vinifera with more robust species like v. riparia and v. labrusca varieties, are often touted for their potential resilience to environmental stress.

Characterisation of berry shrivel in Vitis vinifera L. Cultivars in the Stellenbosch wine region

Late season dehydration, bunch stem necrosis, sugar accumulation disorder and sunburn are various types of berry shrivel occurring in vineyards. The incidence of these types of shrivel, and the degree to which it occur are influenced by various factors in the vineyard. These factors include the presence of pests and diseases in the vineyard, genetic traits expressed in certain cultivars, as
well as climatic and environmental factors. The occurrence of berry shrivel in the vineyard could negatively impact the quality and quantity of the fruit produced.

New biological tools to control and secure malolactic fermentation in high pH wines

Originally, the role of the malolactic fermentation (MLF) was simply to improve the microbial stability of wine via biological deacidification. However, there is an accumulation of evidence to support the fact that lactic acid bacteria (LAB) also contribute positively to the taste and aroma of wine. Many different LAB enter into grape juice and wine from the surface of grape berries, cluster stems, vine leaves, soil and winery equipment. Due to the highly selective environment of juices and wine, only a few types of LAB are able to grow.

Copper reduction strategy for sangiovese in organic viticulture

Organic viticulture requires copper based treatments for bunch protection even though an intensive employment is no longer admitted because of its low leaching and phytotoxicity in the soil. UE Reg. 1981/2018 set copper employment to 4 kg/ha for year or 28 during 7 years with an absolute level allowed of 6 Kg/ha although those limits were decreased frequently.