Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Geology and Soil: effects on wine quality (T2010) 9 The geological and geomorphological events that determine the soil functional characters of a terroir

The geological and geomorphological events that determine the soil functional characters of a terroir

Abstract

The geology of a region is deemed to be an important component of terroir, as it influences the shape of the landscape and the climate of vineyard. The nature of rock and the geomorphological history of a terroir affect soil physical and chemical composition through a dynamic interplay with the changes of climate, vegetation and other living organisms, as well as with man activities.
This work is aimed at demonstrating that the soil functional characters which differentiate the terroirs of a denomination of origin area are products and witnesses of the geological and geomorphological events, natural and human induced, which occurred in that trait of land. The final scope being enhancing the awareness of stakeholders about the possible environmental and economic losses that can derive from an irrational soil management, which can lead to the worsening or loss of irreproducible soil functional characters of the best terroirs.
The work makes reference to the denomination of origin ”Vino Nobile di Montepulciano”, where a four years research was conducted on the relationships between soil characteristics and the viticultural and oenological behaviour of Sangiovese vine. The soils of the Montepulciano vineyard range notably in fertility conditions and functional characters, also when formed on the same kind of sediments, in particular as for water and oxygen availability. The grape production at vintage, as well as the organoleptic characteristics of the wine, resulted strictly interactive with the different soils. The wines obtained on a first group of soils had a good structure and typicity, but the stability of wine sensorial profile during the years was low. A second group exhibited good structure, typicity, and a good stability of wine sensorial profile. A third group had low structure, low typicity, and high astringency all the years of trial.
The oldest soils of the Montepulciano vineyard started their formation during the Pleistocene. During the medium Holocene, man deeply influenced pedogenesis, but it is during the last 50 years that the intensity of the man action reached its maximum. Pre-plantation activities of the new specialized vineyards upset the land, leaving very different effects on soil functional characters. Where the soils before vine plantation were deep and rather homogeneous, soil functional characters remained the same, whereas they changed significantly where soils were shallower. Shallow soils on marine clays, in particular, resulted very vulnerable.
Best soils for the Nobile di Montepulciano wine production, that is, those belonging to the second group, were old soils, formed as a consequence of particular natural and human induced geomorphological events. Therefore they should be considered cultural heritages.

DOI:

Publication date: November 23, 2021

Issue: Terroir 2010

Type: Article

Authors

E. A.C. Costantini, P. Bucelli, S. Priori

Agricultural Research Council, Research centre for Agrobiology and Pedology, p. D’Azeglio 30, Firenze, Italy

Contact the author

Keywords

Climate change, cultural heritage, wine, quality, Sangiovese, Vino Nobile di Montepulciano

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Effect of irrigation regime on carbon isotope ratio (δ13c) in different grapevines

In Castilla-La Mancha as other winegrowing regions, vineyards suffer the effects of the global climate warming. Severe spring and summer droughts are increasingly frequent, which concur with the phenological stages most susceptible to water and temperature stress. Under these conditions, irrigation use is required in order to ensure the vineyard growing sustainability. However water resources are increasingly limited, for this reason is required to choose cultivars displaying high water use efficiency.

Making sense of available information for climate change adaptation and building resilience into wine production systems across the world

Effects of climate change on viticulture systems and winemaking processes are being felt across the world. The IPCC 6thAssessment Report concluded widespread and rapid changes have occurred, the scale of recent changes being unprecedented over many centuries to many thousands of years. These changes will continue under all emission scenarios considered, including increases in frequency and intensity of hot extremes, heatwaves, heavy precipitation and droughts. Wine companies need tools and models allowing to peer into the future and identify the moment for intervention and measures for mitigation and/or avoidance. Previously, we presented conceptual guidelines for a 5-stage framework for defining adaptation strategies for wine businesses. That framework allows for direct comparison of different solutions to mitigate perceived climate change risks. Recent global climatic evolution and multiple reports of severe events since then (smoke taint, heatwave and droughts, frost, hail and floods, rising sea levels) imply urgency in providing effective tools to tackle the multiple perceived risks. A coordinated drive towards a higher level of resilience is therefore required. Recent publications such as the Australian Wine Future Climate Atlas and results from projects such as H2020 MED-GOLD inform on expected climate change impacts to the wine sector, foreseeing the climate to expect at regional and vineyard scale in coming decades. We present examples of practical application of the Climate Change Adaptation Framework (CCAF) to impacts affecting wine production in two wine regions: Barossa (Australia) and Douro (Portugal). We demonstrate feasibility of the framework for climate adaptation from available data and tools to estimate historical climate-induced profitability loss, to project it in the future and to identify critical moments when disruptions may occur if timely measures are not implemented. Finally, we discuss adaptation measures and respective timeframes for successful mitigation of disruptive risk while enhancing resilience of wine systems.

Soil Temperature and Climate Change: Implications for Mediterranean Vineyards 

More frequent and extreme temperatures and droughts pose challenges to the wine sector in Mediterranean Europe. Soil is crucial to sustain the equilibrium of ecosystems, economic growth and people’s prosperity worldwide. In viticulture, soils are a major component of the terroir and do influence vine’s growth, yield and berry composition. Soil temperature (ST) affects soil´s physical, chemical and biological processes and also crop growth. The impact of ST becomes even stronger when dealing with row crops such as grapevine, when considering the increased exposition to radiation. However, the impact of ST on crop performance remains poorly described, especially for extreme climatic conditions.

Comparison of the free radical-scavenging activity in infected oidium and sound dolcetto grape cultivar grown in a terroir of Central Italy

The importance of polyphenols, which are present in many vegetables and grapes too, is well-know and documented. Specific research works about the red grape

Terroir in Tasting: A sensory approach for marketing fine Australian wines of provenance as memorable experiences

Aims: Establishing an image of fine wine through the Geographical Indication (GI) system is of interest to the Australian wine sector. Beyond provenance, the sensory experience of fine wine is often linked to consumption with appropriate foods. For this purpose, studies were undertaken to understand consumer perceptions of what