Terroir 2008 banner
IVES 9 IVES Conference Series 9 Study of the sensory dimension of the wine typicality related to a terroir and crossing with their viticultural and oenological characteristics

Study of the sensory dimension of the wine typicality related to a terroir and crossing with their viticultural and oenological characteristics

Abstract

The typicality of a product can be characterized by properties of similarity in relation to a type, but also by the properties of distinction. The typicality related to the soil is associated with a delimited geographical origin, and with asserted characteristics. The aim of this study is to determine the sensory profile of typical wines and to interrelate with their technical characteristics. A quantitative descriptive analysis was carried out by an expert panel on 34 wines from Vintage 2005 (23 “Anjou-Villages Brissac” and 11 “outsiders”). All these wines came from plots being able to product the A.O.C. “Anjou-Villages Brissac”. In addition, a characterization of the typicality of the products was carried out with “just about right” profiles, by a group of professionals of this area, from descriptors raised by discussion with all the producers of the area. Finally, a crossing of the sensory data with viticultural and enological practices was carried out.
The results showed the relevance of the expert panel in the discrimination of the products. Two groups could be distinguished, one consisted essentially of wines “Anjou-Villages Brissac” and the other consisted essentially of wines “outsiders”. The panel of professionals proved to be relevant on the characterization of the total quality of the wines, but did not appear consensual for more precise descriptors. The crossing of sensory profiles with some technical acts showed significant effects of “thinning out of leaves”, “disbudding”, “maceration” and “fermentation with industrial yeast” on sensory characteristics.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Yves CADOT (1), Alain SAMSON (2), Soline CAILLE (3), Marie SCHOLTUS (1), Cécile COULON (4), René MORLAT (1)

(1) INRA, UE1117 Vigne et Vin, F-49070 Beaucouzé, France
(2) INRA, UE999 Pech-Rouge, F-11430 Gruissan, France
(3) INRA, UMR1083 Sciences pour l’Œnologie, F-34060 Montpellier, France
(4) IFV, Val de Loire, F-49470 Beaucouzé, France

Contact the author

Keywords

Sensory analysis, Terroir, Typicality, viticultural practices, oenological practices

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

A pragmatic modeling approach to assessing vine water status

Climate change scenarios suggest an increase in temperatures and an intensification of summer drought. Measuring seasonal plant water status is an essential step in choosing appropriate adaptations to ensure yields and quality of agricultural produce. The water status of grapevines is known to be a key factor for yield, maturity of grapes and wine quality. Several techniques exist to measure the water status of soil and plants, but stem water potential proved to be a simple and precise tool for different plant species.

Origin of unpleasant smelling sulphur compounds during wine fermentation

The wine sector is undergoing considerable transformation, particularly as a result of climate change and increasing consumer expectations for quality products, in a globalised and increasingly competitive market.

Résistance stomatique et caractérisation hydrique des terroirs viticoles

The analysis of the distribution of natural plant populations allows an ecological characterization of cultivated environments in thermal, water and trophic terms; it guides the choice or selection of plants (or grape varieties) to cultivate (Astruc et al ., 1984, 1987; Delpoux, 1971; Jacquinet and Astruc, 1979). This approach has given good results in areas where the topography is the determining factor in the ecological differentiation of the terroirs.

Characterization of variety-specific changes in bulk stomatal conductance in response to changes in atmospheric demand and drought stress

In wine growing regions around the world, climate change has the potential to affect vine transpiration and overall vineyard water use due to related changes in atmospheric demand and soil water deficits. Grapevines control their transpiration in response to a changing environment by regulating conductance of water through the soil-plant-atmosphere continuum. Most vineyard water use models currently estimate vine transpiration by applying generic crop coefficients to estimates of reference evapotranspiration, but this does not account for changes in vine conductance associated with water stress, nor differences thought to exist between varieties. The response of bulk stomatal conductance to daily weather variability and seasonal drought stress was studied on Cabernet-Sauvignon, Merlot, Tempranillo, Ugni blanc, and Semillon vines in a non-irrigated vineyard in Bordeaux France. Whole vine sap flow, temperature and humidity in the vine canopy, and net radiation absorbed by the vine canopy were measured on 15-minute intervals from early July through mid-September 2020, together with periodic measurement of leaf area, canopy porosity, and predawn leaf water potential. From this data, bulk stomatal conductance was calculated on 15-minute intervals, and multiple regression analysis was performed to identify key variables and their relative effect on conductance. Attention was focused on addressing multicollinearity and time-dependency in the explanatory variables and developing regression models that were readily interpretable. Variability of vapor pressure deficit over the day, and predawn water potential over the season explained much of the variability in conductance, with relative differences in response coefficients observed across the five varieties. By characterizing this conductance response, the dynamics of vine transpiration can be better parameterized in vineyard water use modeling of current and future climate scenarios.

From precursor identification to the study of the distribution of 3-methyl-2,4-nonanedione in red wines and spirits

Prematurely aged red wines are marked by intense prune and fig aromatic nuances that dominate the complex bouquet that can be achieved through bottle aging.